Boat Batteries – Charging and Care

Introduction:

For all boat owners, an understanding of lead-acid batteries is important to optimizing the reliability and performance of the boat’s DC electrical system.  This article introduces some important concepts in order to enable further reading in boating publications, magazines, websites and Internet posts.  This article has no math, and only conceptual references to battery chemistry and physics.

It is essential to understand the rate at which different types of lead-acid batteries can be charged.  For boaters, the subject has a direct bearing on battery and battery charger choices.  Owners must also understand the importance of battery care, including routine monitoring of state-of-charge, battery electrolyte management, equalization charging, and related battery maintenance subjects.  Good battery maintenance will avoid premature battery failure and maximize battery service life.

Batteries (what they are/what they do):

Lead-acid batteries contain chemical energy in the materials of which they are made.  Batteries release that stored energy in the form of DC electric current.   The rate at which that energy can be delivered by a battery into an electrical load is stated in Cranking Amps (CA), Cold Cranking Amps (CCA), Marine Cranking Amps (MCA) and Reserve Capacity (RC).  Deep-cycle (traction) batteries are typically rated in aHr returned over 20 hours (US measurement system; 10 hours is typical in Europe).  Start service batteries are normally rated in CA/CCA/MCA and RC.  The total amount of energy a lead-acid battery can release is determined by the physical properties of the battery materials, its construction, and the length of time over which the energy is drawn off.

Charge Acceptance Rate:

The technical details related to Charge Acceptance Rate (CAR) are quite complex, but there are some simple “rules-of-thumb” that illustrate and explain basic battery charging concepts.  CAR is determined by battery materials and construction technology.  The ill effects of incorrect charging (over charging and under charging) are extremely difficult to measure and may never be fully appreciated by retail battery buyers/owners.  Boaters need to know that poorly designed charging systems can result in premature battery failure and shortened battery service life.

Assume that the lead-acid house bank has been discharged to a point where between 50% and 60% of its total capacity is still remaining.  In other words, 40-plus percent of the battery capacity has been “used,” and the batteries are presently at 50% to 60% State-Of-Charge (SOC).  This condition is an appropriate and reasonable time to begin recharging the batteries.

The CAR “rule-of-thumb” for flooded wet cells at 50% SOC is that they will accept 25%, stated in Amperes, of that cell’s aHr capacity.  So, for a 100 aHr battery at 50% SOC, CAR would be 25A.   That is, that 100 aHr flooded wet cell will accept a charge current of 25A, but no more.  That 25A of charging current can come from a single battery charger or from several charging sources working cooperatively together.

Similarly, the CAR “rule-of-thumb” for AGM and Gel cells at 50% SOC is that they will accept 40%, stated in Amperes, of the cell’s aHr capacity.   So for a 100 aHr AGM or Gel cell at 50% SOC, CAR would be 40A.  Indeed, some specialized AGM cells (Thin Plate Pure Lead) can accept larger charging currents, but the batteries found on most boats tend to be of types that cannot.   An owner who has batteries that can take higher CARs would know that.  The batteries are expensive, and owners would not install those batteries without knowing what they can do and why they’d want/need them.

Just because a battery has a theoretical CAR does not make charging at that rate the right thing to do.

Rules-of-thumb are useful for learning and understanding concepts.  Battery owners should verify the manufacturer’s ratings for their particular batteries.  Batteries do have different specifics.   Lifeline, for example, specifies lesser than “rule-of-thumb” maximum CAR, and for good reason.

For lead-acid batteries, the positive and negative lead plates are composed of two different forms of lead: pure lead and lead dioxide (lead dioxide is also called “sponge lead” by some authors).  Lead-acid batteries release electric current in a chemical reaction that converts lead and lead dioxide into lead sulfate and simultaneously, sulfuric acid into water.  In that chemical reaction, free electrons are released.  Charging a lead-acid battery is the process of recombining the lead sulfate and water back into lead/lead dioxide and sulfuric acid.  Lead is a crystal lattice metal.  In the recombination, electrons are restored to the structure of the crystal lattice of the metal.

Most boaters are aware that multi-stage battery charging is the optimum technical solution to maximize battery service life and ensure the reliability of their DC electrical system.  A simplified view of the nominal charge-cycle that multi-stage chargers should produce is as follows:

Lead-acid battery charging stages

Lead-acid battery charging stages

In the “bulk” stage, the charging source maximizes the charge current to the level the batteries/bank can accept.  Battery terminal voltage starts out low, and slowly increases to it’s pre-determined setpoint as SOC increases.  In the “absorb” stage, terminal voltage is held at a pre-determined level, and  charging current decreases as SOC continues to increase.  In the “float” stage, terminal voltage is held slightly above the battery’s resting voltage and a very small current trickles through the battery.  The “equalize” stage is a short duration, occasional, over-charge performed on a fully-charged battery.

I recommend that charging systems be designed to result in charge rates that are slightly less than battery manufacturer specifications for CAR.  The reason is, with a partially discharged battery, the crystal lattice of the lead plates is depleted of electrons.  Lead has been converted to lead sulfate and the plate surfaces are “etched” of material.  During charging, it takes time for the conversion of lead sulfate back into lead and lead dioxide, and it takes time for electrons to equalize throughout the interior deep regions of the lattice of the lead plate material.   If the rate of electron migration is driven to try to proceed above the maximum CAR, the process can result in a phenomena called “surface charge.”   The surfaces of the lead plates of the battery can become electron-saturated even while the deep structure of the lead lattice remains electron deficient.  Generally, electron migration rate-control is one of the key purposes of the “absorb” stage of the battery charging curve.

Modern multi-stage AC battery chargers and multi-stage engine alternator voltage regulators (like the Balmar MC614 and ARS-5, and the Xantrex XAR) use

  1.  1) battery terminal voltage,
  2.  2) elapsed time,
  3.  3) battery temperature, and
  4.  4) the amount of charge current flow

to determine when to switch from stage-to-stage.   If a battery is charged too fast by a charging source capable of “force-feeding” more current than the battery can accept, surface charge over-saturation will occur.  Under this condition, electrolyte gassing will also occur.

Worse than gassing (discussed later in this article), battery terminal voltage will appear to have reached a charger stage-transition setpoint, and a multi-stage charger can think that it’s time to switch into the next later stage of charging.  For example, the “bulk” charging target voltage can be reached early, and the charger will then switch to “absorb.”   This particular condition doesn’t have serious consequences, but it does prolong the overall time it takes to achieve full charge.

However, the “absorb” charging current threshold can appear to be met prematurely.  In that case, “absorb” can terminate early, and the charger can enter “float” prematurely.   If absorb ends prematurely, the lattice structure of the plates will be in an only partially reconstructed (electron-depleted) state.  Thereafter with the continuing passage of time, the excess surface charge that caused the premature stage switch will bleed into the deep lattice.   Once electron equilibration completes, the result is that the entire lead lattice remains electron deficient.   That is, in English, the battery is undercharged (not fully re-charged).   That means some lead sulfate remains behind.

Complicating the above, some experts now feel that the duration of the “absorb” phase in modern multistage chargers is not sufficiently long enough to fully recharge the battery, even when everything else is optimum.  Because the volume of available lead sulfate decreases as the battery charges, the speed at which it’s conversion back in lead and lead dioxide necessarily slows.  Some experts say that the final 15% of charge, from 85% to 100%, requires 8 hours.  Shore power chargers that drop into float for long times can accomplish the same thing, but running on a genset at anchor, not so much.

All of this also means the energy restored into the battery is only a large fraction of what should be there; let’s say, instead of 100 aHr for a 100 aHr rated battery, maybe only 95 aHr or 96 aHr.  Following is a marketing (conceptual) chart from a major manufacturer of solar charging systems and PWM and MPPT controllers showing the effect of charging on battery life:

Effects of charging on battery service life.

Effects of charging on battery service life.

An example: assume a 1000 aHr flooded wet cell battery bank that is around 50% SOC; it’s theoretical CAR is 250A (25% of aHr capacity).   A charging source controlled to drive only a “bulk” charge of 150A or 200a would avoid the build-up of excess surface charge, but a charger (or multiple charging sources working cooperatively) that drove to 400A would indeed create a massive surface charge that could result in a battery bank that is chronically undercharged while also needing a lot of electrolyte replacement.

Realize also that in all lead-acid batteries, as SOC increases, CAR decreases.  That is, the “internal resistance” of the battery’s “equivalent circuit” goes up.  That also increases the possibility of excessive surface charge.  The net is, charger selection and capability are extremely important.  The charger and the charging program need to be able to sense battery behavior and compensate for changing CAR throughout the charging process.  All battery banks of all sizes can exit the “absorb” stage early, wind up in “float” prematurely, and be chronically undercharged.   If that happens on a regular basis, battery service life will be lessened.

Observation:

Battery charging is indeed a trade-off between what is actually best for the physics and chemistry of the battery and what the owner views as “best” or “necessary” for them in their daily lives.   What’s best for the battery is to be fully recharged, and to be fully charged somewhat slowly compared to its theoretical maximum capability.   Of course, that means increased generator run time for anchored boats.    Many cruisers charge to the end of bulk and quit; that point is, as a “rule-of-thumb,” the “gassing” point, or about the 85% SOC point.   Most cruising boaters have heard of re-charging in the range between 50% SOC and 85% SOC.   That is not a strategy to maximize battery service life or return total lifetime amp hours.   To achieve those goals, owners must do what is best for the batteries. Most battery manufacturers recommend fully charging batteries at least every 10 days to two weeks.

A side benefit of solar charging systems is that they have lower charging capacities and do their work over longer periods of time; slowly.

Battery Monitoring:

I recommend the use of a coulomb counter to monitor battery State-Of-Charge (SOC).   One such legacy stand-alone coulomb counting device is the Xantrex Link10/Link 20, but it has some limitations.  There are several aftermarket coulomb counters available today, such as the Bluesea Systems M2 DC (p/n 1830), Victron BMV-770 or BMV702, Xantrex LinkPro and Mastervolt BTM-III.

I feel the best choice these days is to get a coulomb counting monitor from the manufacturer of the charger or inverter/charger.   Aboard Sanctuary, a Magnum MS-Series Inverter/Charger is installed.   I replaced my Xantrex Link 20 with a Magnum Battery Monitor, ME-BMK.   Our monitor calculates Peukert effect and Charge Efficiency Factor (CEF) in real time.  This is especially important for those who run AC appliances such as coffee makers, food processors, chopper/grinders, microwave ovens, vacuum cleaners, washer/dryers and such on inverters.   These types of loads on the 120VAC side are very demanding on the 12VDC battery side.   Heavy DC loads (thrusters, windlasses, winches and DC motors [watermaker “Clark Pump”]) also distort (lessen) the 20-hour rating of energy capacity that batteries can return.

Many boaters rely on conventional DC voltmeters to track state-of-charge.   Battery terminal voltage is a late indication of SOC.   Particularly when large DC loads are involved, voltmeters do not provide a reliable indication of SOC.  Conductance testers are great at measuring CA/CCA/MCA, but not so good at aHr.   In my opinion, coulomb counters remain the best available alternative today.

Electrolyte Level:

Recalling  the purposes of the “bulk” and “absorb” stages of charging: “bulk” is a constant-current stage of large current flow (full-fielded alternator) that is targeted to take advantage of the Charge Acceptance Rate physics of the lead plates.  “Absorb” is a constant-voltage stage that is intended to restore the electron equilibrium of the deep crystal lattice of the lead plates.  However, electron replacement in the plates is only part of what’s going on inside the battery.   The chemistry of the liquid electrolyte is also dynamic and changing throughout the recharge and discharge cycles.

When flooded lead-acid batteries are fully charged, the “normal” mixture for the liquid electrolyte is approximately 35% sulfuric acid and 65% pure water, so the Specific Gravity (SpGr) of the electrolyte mixture is 1.265 at 80ºF.   With flooded wet cells, SpGr can be measured with a hydrometer; it’s not practical to measure SpGr with sealed AGMs or Gels. The process of discharging a battery removes sulphur from the sulfuric acid to form a sulfate of lead. Timely recharging of the battery reverses that reaction.   With the formation of lead sulfate during discharge, the percentage of sulphuric acid in the electrolyte mixture decreases and the percentage of water in the electrolyte mixture increases.  The SpGr of the electrolyte mixture goes down.  (Note: measurement of SpGr is the single most reliable measure of battery state-of-charge; perhaps not practical, but by far the most accurate).

As a lead-acid battery begins to charge, the electrolyte is restored toward the 35/65% “normal” equilibrium mixture concentrations of sulphuric acid and water.   During charging, there comes a point when electrons cannot move as fast into the lead lattice as the chemical process is capable of proceeding. That point is called the “gassing” voltage; or the point at which significant bubbling begins to appear in the liquid electrolyte; the electrolyte appears to be “boiling.”   “Gassing” is the point at which hydrogen gas is given off to the atmosphere.  At the gassing voltage, CAR is overcome by the build-up of surface charge; that’s when “gassing” begins.

One result of this evolution of electro-chemistry is a drop in the liquid level of the electrolyte in the battery cell.   Some people say “water has boiled off.”   Not exactly, but that description is OK relative to the externally observable symptom.   The liquid electrolyte level does go down, and if it goes far enough, the plate tops will get exposed.   Another consequence of the gassing is that some lead sulfate remains un-reconstituted, so over time, battery capacity is diminished.

The “gassing” voltage (or ideally, a voltage immediately below the gassing voltage) is the point where lead-acid battery chargers should  switch from “bulk” to “absorb.”   At that point, the battery is around 85% state-of-charge.   One major system design reason for a charger to switch from constant current (bulk) to constant voltage (absorb) at that 85% level is to reduce gassing to a minimum.   Implication: if there is an ongoing need to replace distilled water in the battery electrolyte mixture, the ONLY reason is that the charging source(s) is not switching from bulk to absorb at the most optimal point in the charging cycle FOR THOSE BATTERIES AT THEIR OPERATING TEMPERATURE.   Other than a physical damage to the battery case, there’s no other reason to lose electrolyte.

Electrolyte Stratification:

I believe flooded wet cells offer the best overall return-on-investment for boats that get a lot of use.  AGMs or Gels are a better choice for boats that get relatively little use.

Stratification is a phenomena that happens to flooded wet cells over a relatively long period of time (weeks) of disuse.  As discussed above, the liquid electrolyte in lead-acid batteries is a mixture of sulphuric acid and water.  Over time, the sulphuric acid and water components will settle in layers in the battery cell chambers (stratify), water “floating” on top of acid.  Charge/discharge cycles set up convective circulation in the electrolyte mixture, so stratification does not occur when batteries are used.  Boats also agitate the electrolyte mixture as jostle about in a seaway.  Equalization charging also creates convection current which mixes electrolyte liquid.  Boats at risk for electrolyte stratification are boats with flooded wet cells that get infrequent use, have high DC electrical demands, and have small charger capacity and/or are not recharged for sufficient time to achieve a full charge.

Stratification in flooded wet cells is a problem for several reasons.  Acid concentration at the bottom of the plates causes open circuit terminal voltage to appear higher than it actually is.  Uneven distribution of the acid throughout the cell reduces CA/CCA/MCA and causes uneven plate etching.  Sulfates on plates are not evenly reconstituted.  Over long periods of time, these issues cause premature loss of capacity and lead to early battery failure.

Digital Battery Charging Programs:

Charger manufacturers are different from battery manufacturers.  Chargers from any one manufacturer will charge batteries from many battery manufacturers.  Default charging programs make assumptions (via “rules-of-thumb”) based on averages for battery materials, construction and operating temperatures.   Occasionally in real life, factory defaults must be tweaked.   Not all flooded wet cells are the same; not all AGMs are the same.  Balmar voltage regulators allow the setpoints for charging-stage voltage, stage duration and battery temperature to be adjusted.   Most newer shore power chargers allow for some parameters to be adjusted.  Many older technology chargers do not.  Shore power chargers should be equipped with temperature probes for the batteries they charge.  If the charger’s battery-type setting (flooded, AGM, Gel) is correct for the battery being charged, and batteries nevertheless continue to lose electrolyte, reduce the bulk setpoint voltage in steps of 0.1 volt and monitor the results.   Electrolyte loss should decrease.  Do that incrementally until full charging occurs with minimal electrolyte loss.   The effect will be that it may take a few minutes longer to achieve a fully charged battery (total time from start-of-bulk through end-of-absorb), but there will be less electrolyte loss, less hydrogen outgassing, and more complete re-constitution of lead sulfate.

These same processes occur inside AGM and Gel batteries.   The difference is, because AGM and Gel batteries are sealed, it can’t be seen or measured.   These batteries have pressure operated valves (Valve Regulated Lead Acid) that retain the outgassed hydrogen under pressure, and allow it to resorb into it’s electrolyte over time. That does work, to a point.  However, it’s way better to avoid overcharging sealed batteries.  For maximum return on service life, set charging parameters so that sealed batteries charge slowly.  Especially so with Gels, because hydrogen gas escaping in gel cells can actually create gaps (channels) in the Gel, which can result in permanent loss of capacity in the cell.

Equalization:

Equalization (called “conditioning” by some manufacturers) is the process of applying an intentional over-voltage charge to a battery.  Because the battery to be equalized starts out fully charged, DC currents forced through the battery during equalization are relatively low.  Equalizing is very hard on the mechanical structure of the plates and the plate support frames.  It also causes aggressive release of hydrogen gas (gassing).   These negatives are why very few AGMs, and no Gels, can be equalized.  Battery and charger manufacturers recommend equalizing flooded wet cells only when the SpGr in resting cells differ from cell-to-cell by from 0.15 to 0.20.

Measuring SpGr is not hard, but it is tedious.  Achieving a “resting” state is impractical on most boats while batteries are in use.  Lead-acid flooded wet cells are 2.2VDC each, so there are 6 cells in each battery of nominally 12V.   A bank of three 12V batteries will have 36 individual cells.   Only the most dedicated owners will measure the SpGr of 36 cells to determine if equalization is actually appropriate.

Then there is the matter of, “how long to equalize?”   Manufacturers recommend monitoring of cell SpGr hourly, with the equalization overcharging voltage being discontinued when the SpGr is consistently equal across all of the cells of the battery/bank.  When the SpGr is equal across all cells in the battery, that is THE DEFINITION of “equalized.”   That is the condition where the internal resistance and internal losses of each cell are identical, and balanced, so each cell carries a fully equivalent part of the total load.   This state is reached after a variable duration of time, depending on the starting condition of the battery when the equalization process was begun.

The net is, while there is real science and manufacturer’s recommendation on how and when to equalize, and when to quit equalizing, the tedious and inconvenient nature of “doing this right” makes this task ripe for shortcuts and dockside lore.   It takes a lot of time to do it right; I assume, more time than most people are willing to invest.  Can it be a good thing to do?  Absolutely.   Can it be a bad thing if it’s over done?   Absolutely.

Boardings by Law Enforcement

Background:

In the United States, the supreme law of land is our Federal Constitution. God blessed our founding fathers with great intelligence and insight as they developed and adopted that wonderful document. The first 10 amendments, collectively known as the “Bill of Rights,” give citizens specific protections. Among them, the Fourth Amendment states: “The right of the people to be secure in their persons, houses, papers, and effects, against unreasonable searches and seizures, shall not be violated, and no Warrants shall issue, but upon probably cause, supported by Oath or affirmation, and particularly describing the place to be searched, and the persons or things to be seized.” Probable cause is “the level of suspicion that would cause a reasonable and prudent person, given the overall circumstances, to believe a crime has been committed.” A warrant is a “court order authorizing police to arrest a person, search his or her private property, or take his or her belongings.” All boaters should note, in these United States, this Constitutional protection DOES NOT extend to boats and boaters.

United States Coast Guard:

References for this section:

  1. http://www.uscg.mil/d1/prevention/NavInfo/navinfo/documents/Enforcement.PDF
  2. https://www.law.cornell.edu/uscode/text/14/89
  3. http://navwaters.com/2012/11/12/the-fourth-amendment-rights-vs-boarding-power-of-the-united-states-coast-guard/
  4. http://boatswainsmate.net/BM/BOStudyGuide.pdf
  5. http://www.dtic.mil/get-tr-doc/pdf?AD=ADA329162
  6. http://military.wikia.com/wiki/Posse_Comitatus_Act

The United States Coast Guard mission is to “enforce or assist in the enforcement of all applicable federal laws, on, under and over the high seas and waters subject to the jurisdiction of the United States.” This mission is conveyed by Congress under 14 USC 2 (1). The Coast Guard has the authority to board any US flag vessel anywhere in the world, and any vessel, regardless of Flag or stateless status, in US waters. The Coast Guard has four fundamental sources of authority:

  1. 14 USC 89 for Maritime Law Enforcement;
  2. 14 USC 143 for Customs and Border Protection;
  3. 50 USC 191 for protection and security of vessels, harbor, and waterline facilities including law enforcement ashore, and
  4. The history and traditions of the sea for Mariner Assistance

The Coast Guard’s authority under 14 USC 89 is to “address inquiries to those on board, examine the ship’s documents and papers, and examine, inspect, and search the vessel and use all necessary force to compel compliance.” The word, “inspect,” can be used to justify much more intrusive searches. For example, the Coast Guard can “inspect” your engine room for “adequate ventilation,” but in the process, take note of anything that happens to be there that some 18 y/o Petty Offices decides to be curious about. Not that cruisers have anything to hide, but there is no analogy to this warrantless and intrusive police authority in your home on land.

The US Coast Guard also has Customs authority under 14 USC 143, which states “commissioned, warrant, and petty officers of the Coast Guard are deemed to be officers of the customs and when so acting shall, insofar as performance of the duties relating to customs laws are concerned, be subject to regulations issued by the Secretary of the Treasury governing officers of the customs.” Who knew?!

The Posse Comitatus Act (18 USC 1385) prohibits United States Department Of Defense personnel from assisting civilian law enforcement in keeping the peace, arresting felons, or enforcing civil law in general. The US Coast Guard is exempt from the Posse Comitatus Act because it operates under the Department of Homeland Security, not the Department of Defense. (The National Guard is also exempt from Posse Comitatus, because the National Guard is a state agency under civil control of the Governors of the respective states.)

Firearms:

For those that carry weapons aboard, certain weapons are always prohibited:

  1. Short Barreled Shotgun:
    1. Barrel Length is less then 18”
    2. Overall Length is less then 26“
  2. Short Barreled Rifle:
    1. Barrel Length is less then 16”
    2. Overall Length is less then 26”
  3. Machine Guns:
    1. Any weapon that is designed to shoot, or does shoot, more then one shot automatically, without manually reloading, by a single function of the trigger
    2. Includes the Frame and Receiver or any combination of parts designed and intended for use in the converting into a Machine Gun
  4. Smooth Bore Pistol:
    1. Any pistol whose barrel does not have spiraled grooves inside the barrel as does other pistols
  5. Muffler or Silencer:
    1. Any device that attaches to a pistol that might lessen the sound of a round being discharged

Furthermore, under 18 USC 922 (d), certain persons are always prohibited from carrying firearms, including:

  1. Convicted felons
  2. Dishonorably discharged persons of the military
  3. Adjudicated mentally incompetent
  4. Renounced US citizenship
  5. Illegal alien
  6. User/Addict of a controlled substance
  7. Fugitive from justice
  8. Has a court order restraining the person from harassing, stalking, or the threatening of an intimate partner or child of such partner
  9. Convicted of a misdemeanor crime of domestic violence

Boardings:

Coast Guard boardings are usually for enforcement of “Substantive Law.”  Substantive Laws prohibit certain actions or require certain affirmative conduct.  Categories of substantive law enforced by the US Coast Guard include:

  1. Drug enforcement (46 USC Appendix 1903);
  2. Smuggling and immigration (8 USC 1324);
  3. Fisheries laws;
  4. Protected areas and species;
  5. Environmental and pollution;
  6. Port and waterway;
  7. Coastal security;
  8. Vessel safety and “manifestly unsafe voyage (46 USC 4302 and 4308); and
  9. General criminal law.

The Coast Guard does have a category of boardings called “Consensual Boardings.”  Consensual boardings usually involve non-US Flag vessels, and have three criteria:

    1. Done with the permission of the vessel’s master;
    2. Can only look in spaces that the master permit; and
    3. Ends when masters say so.

State and Local Law Enforcement Officers:

References for this section:

  1. http://blog.tradeonlytoday.com/dealer_outlook/?p=1543%22
  2. http://opinions.aoc.arkansas.gov/WebLink8/0/doc/310905/Page1.aspx
  3. http://www.outdoorhub.com/news/2012/04/30/michigan-public-act-62-revises-random-boat-stops-for-safety-inspections/
  4. http://www.ohiohouse.gov/republicans/press/ohio-house-passes-boater-freedom-act
  5. http://www.nytimes.com/2011/06/11/nyregion/stepped-up-security-checks-on-hudson-anger-boaters.html?_r=0
  6. https://boatingonthehudson.wordpress.com/2012/07/28/schumer-demands-reduction-in-unnecessary-boat-stops-and-universal-inspection-sticker-system/

Keep in mind that the United States Coast Guard is an agent of the United States Federal Government. The US Coast Guard has sweeping authority granted by Congress. That authority actually originated with the Revenue Act of 1790, and has been handed down to today’s Coast Guard. I would note that in the 1790s, there were very few pleasure boats, and even fewer full-time cruisers and liveaboards. Do I have an “expectation of privacy” on my boat? You bet I do. My boat is my home; my “castle.” I live there; I eat there; I sleep there; our boat is definitely our “castle.”  But not at law!

The fact is that state, county and local marine police agencies do not have the sweeping authority that the Coast Guard has. In fact, even other Federal agencies do not have those sweeping powers, including Customs and Border Protection. Only the US Coast Guard has those authorities. However, LEOs of these lesser agencies will not hesitate to assert that they do, and act bullishly to abuse a boat operator’s  confusion, innocence and anxiety. So, what is the truth?

Arkansas: On Feb. 7, 2013, the Arkansas Supreme Court (case: Arkansas v. Robert M. Allen) handed down a ruling that the random stopping of Allen’s boat was unreasonable and violated Allen’s constitutional rights under the Fourth Amendment.

Michigan: On February 23, 2012, the Michigan legislature adopted Public Law 62, prohibiting random stops of recreational boats for safety inspections.

Ohio: On June 4, 2013, the Ohio legislature adopted House Bill 29, entitled “Boater’s Freedom Act,” which specifies that the state’s law enforcement personnel may only stop a vessel if they have reasonable suspicion that the vessel or vessel’s operator are in violation of marine law or otherwise engaged in criminal activity. The bill had broad support from Ohio’s boaters, the marine industry and the Ohio Division of Watercraft.

Florida: As of the 2016 session of the Florida legislature (the time of this writing), there is a bill pending that would stop gratuitous boardings without probable cause.

New York, New Jersey and Connecticut state, county and local LEOs conduct many gratuitous “boat safety” boardings. Boaters in the tri-state region are outraged. I am not personally knowledgeable of conditions on the West Coast.

None of these new state laws give boaters the same protections they would have in their land-based residences under the Fourth Amendment, but states are beginning to respond to boater angst about repetitive, abusive and inappropriate behaviors by some – clearly not all – LEOs.

What individual boaters choose to do with this information is a personal choice. I consider boarding without consent, and in the case of law enforcement officers, without probable cause, to be an act of “piracy.”  Piracy is, “an act of robbery or criminal violence at sea.” For myself, I have learned to ask, “am I obligated by law to allow you to board?” Officers know that I am not so obligated, and usually will not press the point. If they do, I do not affirmatively grant permission to non-Coast Guard agencies to board. That said, I certainly cooperate if law enforcement officers choose to board. Non-cooperation would only make things worse. Much worse.

Sanctuary has, in the past, been boarded to check our Marine Sanitation Device for overboard discharge. The procedure is that the LEO puts dye flakes in the head, and then flushes about 30 doggoned gallons of water. Presumably, non-complying boats would leave a dye trail in the water. Of course, that is a “destructive test,” wherein it is the usable capacity of the holding tank, for which the boater has paid, that is “destroyed.” So if/when faced with that again, I plan to refuse the test unless I am provided with $25 cash or a chit for a pumpout at the LE agency’s expense. We’ll see how that plays. Wish me luck…

Title, Registration and Taxes

Vehicle registration and titling – automobile, aircraft and boat – are normally handled by state vehicle and traffic laws.  Taxes are handled under various sections of state revenue laws.  From state to state, these laws and not consistent; in some cases, actually mutually exclusive.  For cruisers – especially those who travel the US East Coast seasonally – it is extremely difficult to comply with the laws of all of the states at the same time.  Boaters must understand that there are gray areas to which personal preference and judgement must be applied.  Different people will have different preferences for “operating near the boundaries.”  The ability to deal with ambiguity will be a great personal asset.

For boats that move between states while cruising, this complex area is fraught with questions that can only be answered based on the circumstances of the individual doing the asking.  Where is the owner’s legal residence? What are the “principle cruising waters” of the boat?  Who determines the boat’s principle cruising waters?  Based on what factors/conditions?  Was a sales tax paid when the boat was purchased? If so, what was the percentage rate? Does the boat’s state of registration have a Personal Property Tax? A Use Tax? What is the time-limit for a non-resident visitor before the registration must be transferred to the visited state? Does the visited state require the vessel to be registered “somewhere” before entry? Is the boat USCG Documented? For USCG Documented vesselsIs, is state registration also required in the state where the boat is domiciled? All of this creates very complex questions which are specific to the details of each individual boat owner’s situation.

I’ll start with some terminology that is widely mis-understood and mis-used:

Title:
In law, title is the means by which the owner has just and legal possession of his or her property. It is distinct from the document that provides evidence of the title; e.g., a deed or certificate-of-title. Title can be lost or acquired only by the methods established by law; that is, by inheritance or by purchase. Several persons or entities may have different titles to the same asset. While one holds a legal title (a claim to the asset that is recognized by a court), another may hold an equitable title (the right to have the legal title transferred to them if certain conditions are met/not met). This occurs if there is a mortgage or other lien.

Title – USCG Certificate of Documentation:
The process of obtaining a US Coast Guard Certificate of Documentation is an administrative process of the US Federal Government administered by the US Coast Guard. It is analogous to a state’s registration and titling processes. The process results in the issuance of a Vessel Identification Number and a title document called a “Certificate of Documentation,” or “COD.” The Vessel Identification Number identifies the vessel, and is associated with the vessel’s Hull Identification Number; i.e., the boat, not the owners. The US Coast Guard vessel COD is recognized internationally as a certificate of ownership and nationality. Therefore, documented vessels are protected as vessels of the United States.

The COD is equivalent to a title document. The issuance process includes a title search to ensure the vessel is the legal property of the seller and clear of mortgages, bank loans, Mechanic’s Liens or other financial encumbrances. That can be an advantage for both seller and buyer at time of sale.

To be eligible for US Coast Guard documentation, the owners of the vessel must be citizens of the United States. Usually, any boat over 26 feet in length qualifies for US Coast Guard Documentation. A documented vessel falls under federal law enforcement jurisdiction vs. the jurisdiction of any state or local agency for recovery and prosecution in the event of theft or involvement in criminal activity.

Title – State:
Each state has a titling process for vehicles, vessels and aircraft. The state title is proof of legal ownership, but not necessarily equitable ownership, as equitable title will be subject to satisfaction of mortgages, bank loans, Mechanic’s Liens, and any other recorded encumbrances. These processes operate at the state level, and enforcement is the responsibility of state authorities. In international cases, there is no backing for the owner by US federal authorities.

Registration:
Vessel registration is an administrative procedure of state government, usually under the state’s Vehicle and Traffic statutes.  For cars, it results in the issuance of license plates; for boats, it results in the issuance of a Vessel Identification Number, and usually decals to prove that the process is complete and current. Registration serves to document the contact information of owners and provides a tracking system for the vehicle/vessel/aircraft.  For wheeled vehicles, It grants a “license” that permits the use of public rights-of-way.  For boats, it provides a license to use public trust waterways under the state’s jurisdiction. Registration does not prove ownership.  In some states, a use tax is collected as part of the initial/periodic re-registration process. The use tax is not an excise tax or personal property tax, but both excise and personal property taxes can tag along on the registration process.   SOME STATES REQUIRE REGISTRATION OF USCG DOCUMENTED VESSELS AND SOME STATES DO NOT REQUIRE STATE REGISTRATION OF USCG DOCUMENTED VESSELS.

Sales Tax/Excise Tax:
Whether a tax paid for the purchase of a vessel is a sales tax or an excise tax is a matter of definition of the state law where the tax is paid. To a buyer, it matters little. There is no federal excise tax in the US, but many states impose one. The excise is applied at the time of transfer of title (sale), commonly at a percentage rate of the sale price. Some states do not impose an excise. The rate of excise imposed by states that do varies from state to state.

In a state that imposes a sale-time excise, the tax will be due and payable on a new boat at the time of registration.

What happens if a currently owned boat is moved from state to state depends on the revenue law of the new state. Usually, credit is given for the amount of excise paid in another state at the time of prior registration there. So, moving a boat from Maryland (5% excise) to New York (8-3/4% excise), the owner would pay NY 3-3/4%. Moving the boat from Maryland (5% excise) to Ohio (5.75% excise) would result in a 3/4% tax. Moving the boat from Maryland to Rhode Island (no excise) would NOT result in a refund.

Note: above rates based on BoatUS information, located here: http://www.boatus.com/gov/states/default.asp.

Maryland and Florida also have maximum caps on excise tax rates.

All of this varies from state to state. Using Florida as an example, if an owner moves a currently owned boat from Maryland to Florida, the following Florida tests apply:
1.  the boat was purchased outside Florida, AND
2.  it’s been registered in some US jurisdiction for more than 6 months (registered, like a car, not titled, like the USCG COD), AND
3.  You DID NOT intend to bring it into Florida when you bought it,
then there will be no excise due if you choose to register the boat in Florida.

Personal Property Tax:
Specific items of personal property (vs. real property) may be taxed by some states, counties and local municipalities. PPTs are usually imposed on an annual basis, The owner of the property as of January 1 before the fiscal year begins is generally the entity assessed. Not all state, county and municipal jurisdictions impose PPTs. Items that are subject to PPTs vary widely from jurisdiction to jurisdiction.

Personal Property Taxes can attach to the assets of non-resident transients in some jurisdictions under some circumstances. If a non-resident fails to pay a lawfully imposed PPT, the debt can and may be recorded as a lien against the title of the asset.

Use Tax:
Use taxes are a tax “for the use of our waters.”  This usually comes into play for those who approach or exceed the reciprocity period. Those who cruise and move occasionally will almost certainly not come into contact with the authorities on this one, but those who leave their boats in a marina for the entire winter season may.

Reciprocity:
Time limits apply for the length of time that a state will honor vehicle and vessel registrations from other states. For business travelers and vacationers (short term visits) any state’s vehicle registration is honored everywhere. Likewise, for boaters, any state’s vessel registration is honored everywhere. However, time limits may affect long range cruisers, such as “snow birds,” in some situations. The laws of the various states generally require “domestic” registration within a reciprocity period. This varies from 30 to 90 days, depending on the state.

Florida has a special class of temporary registration called a “Sojourner’s Permit.” The permit amounts to a use tax on boats registered somewhere other than Florida. It extends the allowable stay limit from 90-days to a longer, fixed expiration date.

Florida law also requires that a vessel be registered in some US jurisdiction to be eligible for the 90-day reciprocity deal.  If the boat isn’t registered somewhere, then there’s no state with which to extend reciprocity.  “Reciprocity” implies a courtesy extended between two or more entities.  Florida law requires that boats be registered AT THE TIME THE BOAT ENTERS FLORIDA WATERS.  (Michigan and some other states as well have similar laws.) In the very specific case of a boat from a state that DOES NOT register boats, the Florida Sojourner’s Permit will satisfy Florida law; i.e., registered – albeit temporarily – in FL.  The Sojourner’s Permit is a fixed-term registration for a non-resident boat.  There is no sales tax in this case, since by definition, the intended stay is temporary but longer than 90 days.

Residency:
The specific requirements for legal residency vary from state to state.  Furthermore, different state agencies have different definitions of what constitutes “residency” when they’re the topic is receiving public benefits, in-state tuition at colleges, and income tax liability.  All decisions around changing residency have tax implications, and due diligence will be based on each person’s personal situation.  For those without land holdings and living on a boat, changing residency is actually very easy.  A few items seem obvious:

  • maintain a residence for personal use in the state;
  • get a driver license;
  • register an automobile;
  • register to vote;
  • live in a motor home or vessel which is not permanently attached to any property while not having a permanent residence in any other state;
  • use an address in the state for federal/state income tax filings.

All of the above items “show intent” for the purposes of filing a “Declaration of Intent to Domicile” in Florida.  Florida is a very common seasonal destination for “snow birds.”  Snow birds often own property in other states, and not everyone who spends the season in Florida intends to change residency.  To establish fully legal “primary” residency in Florida, one need only fill out a one-page form called “Declaration of Intent to Domicile.”  The form is filed with the clerk of the circuit court’s office in any county courthouse.  You are a Florida resident at the moment the clerk signs that form.   Florida does not have a personal income tax, but for other-state tax purposes, that declaration would take effect the next following calendar January 1st.   Send a copy to the appropriate taxing authority in the former state of residence as proof of change of residency.

Diesel Engine Maintenance

When we bought Sanctuary, I had no prior experience with diesel engines.  To get myself started, I attended a diesel engine orientation course in Annapolis called “Diesel Dork.”  That course ran two full days and included “hands on” a working diesel.  What I mostly got from that course was the personal confidence that diesel engine maintenance is the same as, or simpler than, maintaining a gasoline engine.  My conclusions were:

1. Routine diesel maintenance is not difficult but can be a bit messy.  There are simple precautions and techniques to minimize messes.
2. Diesel-powered fuel systems are orders-of-magnitude safer to handle than their gasoline-powered counterparts, because diesel fuel does not flash or ignite at Standard Temperature and Pressure (STP).
3. Diesel engines do not have an ignition system, so all that’s needed for an otherwise healthy diesel engine to run is clean fuel and clean air.
4.  DIY mechanics need to form an honest self-assessment of their personal mechanical skills, experience and self-confidence.  Of critical importance is a sense of when to stop and call a professional; i.e., “know when you’re getting in over your head.”
5.  As a DIY mechanic, learn all you can about your own engine(s); don’t worry about anything more.
6.  Anyone with beginner or higher mechanical skills and the inclination to do mechanical work will be able to perform routine diesel engine maintenance.
7.  Anyone with moderate or higher DIY mechanic skills and experience will be able to remove and replace fuel injectors, lift pumps and adjust valve clearances, as discussed below.
8.  Anyone with the tools needed to work on gasoline engines or lawn tractors won’t need to make a large tool investment to work on a diesel engine.
9.  A review of routine service tasks will help new diesel owners develop a list of spare parts and consumables that the boat should carry aboard.

Some background for owners of diesel-powered boats to consider and understand:

1. A “Disabled Boat” event
When cars quit running on the road, tows are relatively easy; especially so in the age of cellphones.  When boats quit running on the water, getting help is not nearly as easy.  Some skill with boat mechanicals is as important to boat operators as navigation and seamanship skills.  If a boat quits while under way, operators should expect to be “alone and on-your-own” for a significant time period. Particularly so if far from shore, in remote areas or during periods of inclement or severe weather. Rough seas, rain, and sensitive or seasick persons and pets aboard will greatly complicate the experience. Even well maintained boats can have mechanical failures, so towing insurance programs from BoatUS and SeaTow can be very valuable in the US.

2. Diesel Engine Technologies in 2016
There are currently two major “generations” of diesel engines commonly found in boats. The classic (older) generation has mechanical fly-weight fuel injection systems and the newer has “computer” controlled common-rail fuel injection systems. Electronic controls are how newer diesels comply with US Clean Air Standards (Diesel Emissions Reduction Act, 2005, and Diesel Emissions Reduction Act, 2010). Classic mechanical fly-weight governed injection pump engines generally can not meet DERA standards and are not sold “new” in the US.  But across the “fleet” of work boats and pleasure craft, mechanically injected engines still represent the vast majority of the install base.  Mechanically injected engines are still in wide use in most other parts of the world. Parts for mechanically injected engines are universally available across North America. These engines will be with us for many years to come.

Other than for starting, mechanically injected engines do not need DC electric power to run. Computer-controlled common-rail injected engines do need power to run. This difference has significant implications to the overall reliability and failure modes of diesel-powered systems. Decline or loss of power due to battery issues can and does impair the operation of, or stop, computer-controlled engines. Design of computer-controlled diesel engine electrical systems must consider alternatives to prevent loss of adequate DC power.

3. Diesel fuel
A boat that has 500 gallons in tankage capacity and is run 80 hours per year is probably going to have aging and old fuel in its tanks.  Within weeks after the refining process is complete, diesel fuel begins to slowly break down. “Asphaltenes” are a molecular distillation residue of crude oil refining.  Asphaltenes tend to “clump together” in solution. Over time, they form increasingly larger and larger “clumps.” After long periods of storage, these clumps get big enough to contribute to clogging fuel filters.

Environmental water (rain, snow-melt) gets into fuel tanks primarily through deck fill ports.  (“Condensation” in tanks is not nearly the problem that urban legend would suggest.) Deck fill “O” rings deteriorate and crack, boats stand unattended for long periods, ice and snow lays on decks and water gets into tanks.  Anaerobic algae – “bugs” that don’t need air and live at the interface of fuel floating on water in dark tanks – begin to grow in the tank.  That algae is black, and is often seen in clogged fuel filters.  Algae can be quite thick, almost like cream soup, and it can and will contribute to clogging fuel filters.

Water and other fuel contaminants tend to settle to the bottom of fuel tanks. Diesel fuel floats on water. When a boat gets into rough seas, algae and contaminants in tank bottoms get stirred up and become suspended in the fuel, with the result that filters clog up. Clogged filters may cause the engine to stumble and run rough, and it may even stall. Undetected water contamination can stall engines, cause a “disabled boat” event, damage injection pumps and injectors and cause damage to internal engine parts.

4. Fuel Polishing
“Fuel Polishing” is the process of filtering water and contaminants out of aging fuel stored in boat tanks. This is a service procedure done at the convenience of the boat owner. The process is intended to prevent fuel contamination problems. Polishing is best accomplished by professional fuel cleaning services that use equipment capable of producing high pressures to create artificial turbulence in tanks. The turbulence stirs up any contamination on the bottom of fuel tanks, and the polishing process in turn filters the stirred up fuel to remove suspended contaminants and water.

Polishing systems as installed on boats generally do not have the pressure or volume handling capacity to stir up contaminants that have settled to the bottom of tanks. However, they do circulate the liquid fuel through on-board filters, and will filter any suspended contaminants. The best filtering option is to filter the fuel while passing it from one tank to a second, known-clean tank. That method filters 100% of the liquid fuel in one pass. Some polishing systems remove fuel from a tank, pass it through a filter, and then return it to the same tank from which it came. This is called “back-mixing,” and requires multiple tank volume passes through filters to completely remove suspended contaminants. From one expert: “filtering one tank turnover will theoretically remove 63% of the contaminants.  Filtering two tank volume turnovers will remove 86% of contaminants. Filtering three tank volume turnovers will remove 95% of contaminants. Filtering four tank turnovers will remove 98% of contaminants.” And so it goes…

A running diesel engine does not burn all of the fuel passed from the injection pump to the injectors. More fuel volume is supplied by the injection pump than can “fit” through the nozzles of fuel injectors. Excess fuel is returned to the tank in a fuel return line. That process amounts to “back-mixing polishing,” because the returned fuel has been filtered by the boat’s normal fuel filtration system. Diesel engines from different manufacturer’s are different in the percentage of unused fuel that is returned to the tanks.

Aboard Sanctuary, we turn over the fuel in our tanks several times per year, not through a polishing system, but through ordinary use of the boat.   We carry 320 gallons of diesel fuel, and we consume 500 gallons in traveling between Baltimore and Charlotte Harbor.  We are “snow birds,” and make that trip twice per year.  As we progressed along the Great Loop cruise, we burned 2217.9 gallons, so 2217.9/320=6.9 turns of the fuel in our tanks.  Fresh fuel eliminates – certainly reduces – the chances of fuel-related troubles.

5. Personal Safety – Working on Boat Systems
REMOVE ALL JEWELRY BEFORE WORKING AROUND ANY MECHANICAL OR ELECTRICAL SYSTEMS.  NO WATCHES, NO WEDDING RINGS, NO NECK CHAINS; NO VANITY JEWELRY OF ANY KIND!!!  A gold chain or wedding ring snagged in an engine belt can easily remove a body part, and the victim would consider himself lucky if that’s all that happened. NEVER WORK ALONE. Even though an assistant may not be needed for the work-at-hand, always have someone else nearby who can stop engines, disconnect power and/or call for help in case something bad happens.

6. Personal Safety – Injuries and Raw Water
Be extremely careful when working around and in raw water. Methodically avoid cuts and scrapes of hands, arms, legs and feet. IF CUT, IMMEDIATELY WASH THE CUT WITH A CONCENTRATED BLEACH SOLUTION OR ANTIBIOTIC SOAP. MONITOR HEALING CAREFULLY, AND FOR WEEKS AFTER INJURY. Sea water – both salt water AND fresh water – is biologically active. Raw water can contain bacteria that can cause extremely serious infections in humans. If any sign of infection appears, particularly weeks after healing would seem to be complete, see a physician and mention that you have worked in a seawater environment and exposed open cuts to that sea water. DON’T MESS WITH THIS. AMPUTATIONS ARE NOT UNCOMMON TO TREAT INFECTIONS THAT INITIALLY WERE NOT CORRECTLY DIAGNOSED AND TREATED. For more information, see my article on Mycobacterium Marinum on this website, here: https://gilwellbear.wordpress.com/category/cruising-practica/mycobacterium-marinum/.

7. DIY Maintenance
Diesel engine maintenance tasks can be arranged and sorted into “simple,” “complex” and “advanced” categories. I use “complex” to mean many steps, but not involving specialized background knowledge, awareness or tools. Maintenance intervals can be based on usage, age, wear or repair. Look to manufacturer maintenance manuals for details of service procedures. What follows is a basic overview, certain specific conditional implications and some contextual thoughts. The reader is responsible to have the knowledge and skills to perform the detailed work associated with these tasks.

When I wrote this post, I was thinking of a boat’s main propulsion engine.  Gensets don’t have transmissions, but many of the maintenance activities described here do apply equally to diesel genset engines.  Discussion of specific engine maintenance activities follows:

1.  [Simple; Usage/Age.] Change fuel filters when necessary.  Diesel fuel is usually filtered in two stages: “primary” and “secondary.”  At least daily, monitor fuel suction levels at the primary filters and at the same time, check for the presence of any water in the filter’s fuel bowl. The ability to see water in the filter’s fuel bowl is key to avoiding engine shutdown and possible engine damage.

Primary filters are the first-in-line as fuel flows from the fuel tank towards the engine.   Primary filters are generally located ahead of the fuel “lift pump” in the fuel line. The lift pump creates suction (vacuum) which pulls fuel from the tank and through the primary filters.  Primary filters are almost universally of the “water separator” type.  Be sure filter housing covers and cover gaskets are seated and air tight after being replaced.

Secondary filters are second-in-line.  Secondary filters are located between the lift pump and the fuel injection pump in the fuel line, and are generally mounted on the engine’s block.  Secondary filters are pressurized in operation.  Some secondary filters are on the high-pressure output side of the injection pump, and those are very highly pressurized.  Because of the pressurization, be sure to use secondary filters that are rated for, and compatible with, the engine on which they are installed.  If unsure, buy filters from the engine’s parts dealer. Some manufacturer warrantees require using their own branded filters.  Be sure the filter and gasket are aligned and tight after being replaced. If the filter has a water-separator drains cock, be sure that drain cock is also tightly closed.

When changing fuel filters – particularly the secondary fuel filter – air will have to be “purged” from the filter and fuel supply lines.  Purging fuel lines is a simple but very important procedure.  A diesel engine with air in the fuel lines may stumble and run rough, may run progressively worse as engine load is increased, or may not start/run at all.  Many diesels will tolerate a little air and self-purge after a primary fuel filter change.  Sanctuary’s Cummins engine does, but some will not.

2.  [Simple; Usage.] Diesel engines require huge volumes of combustion air.  The air filter needs to be clean.  Monitor the condition of, and change air filters, as needed.  Keep hands, clothing and rags well away from an exposed air intake port of a running diesel engine.  Air suction at the intake manifold will suck body parts and rags right in (and ruin your whole day in an instant).

3.  [Simple; Usage/Age.] Learn to change the engine’s lubricating oil and oil filter.  I always change the oil filter at every oil change.  The oil change process is identical to that of a gasoline engine.  Use ONLY oil formulated for use in diesel engines (API Service Class=Cx-y”), NOT the oils that are formulated for gasoline engines (Service Class=Sx-y).  The “C” is for “compression,” the “S” is for “spark.”  The engine manufacturer’s owners manual will have details on what oil viscosity to use, how much oil is needed with and without the filter, and how often oil should be changed.  Follow the manufacturer’s recommendations to the letter.  On older engines, it’s a good idea to slightly increase the frequency of oil changes. DO NOT OVERFILL THE CRANKCASE.  Recycle used engine oil.  Regardless of the exact amount of oil the manufacturer calls for, the unique “personality” and mounting angle of each diesel engine will affect the final working level of the oil on the dipstick.  If the engine loses 1/2 quart after an oil change, and then that loss stops, don’t worry about it.  That level is what that particular engine “wants to have,” and it is not an indication of a problem.

4. [Complex as a system; simple in pieces.] The function of the engine cooling system of all boats is critical to the operation, performance and service life of the engine. In the words of one diesel engine expert, “Most engines ‘go bang’ as the result of overheating due to a failure to maintain the cooling system.” Think, plan and act accordingly.

Boat cooling systems are quite complex, but individual maintenance tasks are generally within the skills of DIY mechanics, and can be performed one-at-a-time. Most diesel configurations in boats have two-stage cooling systems.  Inspect and maintain this critical system from end-to-end, from the raw water inlet thru-hull to the exhaust port of the boat, and into each and every cooled mechanical component along the end-to-end cooling circuit.

4a. [Simple; Age.] Periodically inspect and clean the raw water sea strainer. I do this monthly, more often in areas where sea grasses are common. The sea strainer admits engine cooling water through the hull. The strainer assembly has a basket that will catch and trap sea weed and other water borne debris. Learn to close the thru-hull valve, disassemble the sea strainer, clean the debris basket, and restore the system to operation.

4b. [Simple; Age.] Periodically change the antifreeze coolant.  We do that every couple of years, and generally, any time I have to open the fresh water side of the cooling system (infrequent), which re-starts the two-year clock.  The coolant within the engine is referred to as the “fresh water side.” The fresh water side of the cooling system is physically separated from the “raw water” (“sea water”) side.  The fresh water side of the system contains a solution of clean tap water and ethylene glycol coolant, exactly like that of a car’s gasoline engine.  Do not fill the fresh water side with either undiluted (“pure”) ethylene glycol or plain tap water.  Use the proportion of water and glycol that the engine manufacturer recommends.  This is a mandatory check item when decommissioning for winter layup in a cold climate.

Safety note: NEVER use antifreeze products designed for potable (drinking water) water systems in engine cooling systems.  Use ethylene glycol in engines.  NEVER use glycol antifreeze in potable water systems, either.  The glycol is poisonous to humans and animals.

4c. [Simple; Usage/Age.] Periodically change the raw water impeller.  The “raw water” side of the cooling system circulates sea water through a “heat exchanger,” analogous to the radiator of a car.  In a boat’s “raw water” cooling system, hot antifreeze coolant passes over a set of tubes inside the heat exchanger.  Sea water passes through these tubes, and excess heat is removed in the discharged sea water (wet exhaust).

The sea water needed for engine and transmission cooling is circulated by a pump mounted on the engine.  The pump contains a synthetic rubber (nitrile) impeller.  The time interval between impeller changes depends on 1) age of the impeller, and/or 2) cumulative hours of use and/or 3) sediment conditions of the raw water in the area where the boat is being used.  Sanctuary cruises mainly the US East and Gulf Coasts, and we accumulate between 500 and 800 hours per year.  I change our impeller every spring, based primarily on cumulative engine hours.  Grit and sediments in raw water may necessitate more frequent changes in some places.  Relatively few engine hours accumulated over multiple years time would also warrant an impeller change.

4d. [Simple; Age.] The main engine heat exchanger unit needs two kinds of periodic service, which happen at different service intervals.

First, change cooling system zincs quarterly. The heat exchanger usually contains one or more zinc anodes to protect it from galvanic corrosion. Zincs are fit in the sea water side of the heat exchanger. Servicing zincs will result in sea water draining from the heat exchanger, but will not result in antifreeze loss.  The raw water circuit is self-priming after reassembly. Simple start the engine and watch for raw water flow from the exhaust.

Second, clean the heat exchanger seasonally. The raw water side of the heat exchanger contains whatever local raw water exists where the boat is floating, whether river/lake fresh water, ocean salt water or a brackish dilution. Raw waters are biologically active with local sea critters (slime, barnacles, worms, etc); salt water is particularly active.  Seasonally, we clean the heat exchanger by circulating a biocide cleaner and chemical calcium de-scaler through the running system. Every 3 – 4 years, we remove the heat exchanger and take it to a radiator shop to have it chemically de-scaled.

4e. [Simple; Usage/Age.] Most diesel engine raw water cooling systems have in-line “transmission coolers.” In-line coolers are just another form of heat exchanger. A pump in the transmissions circulates transmission fluid around tubes in the cooler, and circulating raw water flowing through the tubes cools the transmission fluid to remove heat. Generally, no maintenance is required on the transmission side. However, it is wise to seasonally remove the input raw water hose and check for debris in the input end of the transmission cooler. Do this automatically if impeller vanes are missing when the raw water impeller is changed. Particularly if vanes break off raw water impellers, it’s highly likely they will get trapped at the first cooler they come to, usually the transmission cooler. Cooler tubes are too small to allow impeller pieces to pass, and the cooler will act like a debris “filter.” It is possible to compromise the effective cooling capacity of the entire cooling system if debris builds up in that cooler inlet. Handle the hoses at the transmission cooler gently to avoid deforming the cooler hose nipples.

Note: some OEM transmission coolers are not fit with zinc anodes. Galvanic corrosion can and will eat pinholes in the copper material from which heat exchangers are made. If a boat is kept in the water – especially salt water – change the cooler as a preventive maintenance action every 3 – 4 years, or every 2000 – 2500 hours. Some aftermarket companies make replacement coolers that do contain zinc anodes. I recommend using a cooler containing a zinc. If the boat is seasonally removed from the water, consult with a competent diesel mechanic for replacement interval recommendations. If this cooler develops an internal leak, sea water will enter the transmission and transmission fluid will be lost to the raw water. Nothing good can come from that scenario!

4f. I have excluded turbochargers, intercoolers and oil coolers in this discussion. Owners of engines fit with these devices must review the periodic maintenance recommended by the engine manufacturer.

5.  [Simple; Wear.] Know how to adjust belt tension, if belt tension is adjustable, and know how to change on-engine belts. Monitor on-engine drive belts (vee belts, serpentine belts) for wear and tension.

6. [Complex; One-time fitup.] All boats should have exhaust gas high temperature sensors to provide early warning of loss of raw water flow, such as might happen if a plastic bag were sucked into the raw water intake or if the raw water intake thruhull were inadvertantly left “closed.” Exhaust gas temperature sensors give warning of imminent system failure much earlier than engine coolant temperature sensors feeding engine gauges. They are easy to install, available in the aftermarket, and are an important safety adjunct to any boat with a wet exhaust. In a “wet exhaust,” environmental raw water is mixed with hot engine exhaust gasses to cool engine exhaust gasses. Diesel engine exhaust gas temperatures can reach 800ºF when the engine is under load. Many boats have rubber exhaust hoses and fiberglass waterlock “mufflers.” It is crucial that diesel exhaust gasses in wet exhaust systems be maintained at a low enough temperature that fiberglass mufflers and rubber exhaust hoses don’t “melt.” Cooling water leaks in the exhaust system of a boat can easily sink a boat.

7.  [Complex; repair.] Diesel engines are shut down by shutting off the flow if fuel to the engine.  The device that controls that function is called a “fuel solenoid,” which on my Cummins, is a part located on the side of my injection pump. The solenoid is an electrically-operated plunger that operates a fuel valve in the injection pump.  On mechanically injected diesels, there are two designs of these solenoids.  The “normally closed” design requires full-time DC power from the battery while the engine is running in order to hold the solenoid activated.  The “normally open” design only requires DC power from the battery to momentarily activate the solenoid, which shuts down the engine.  The “normally open” design has a pushbutton that is used to activate the solenoid to stop the engine.  Sanctuary’s Cummins diesel, OEM, has the “normally closed” design. It is controlled by a familiar “key-type” ignition switch on my gauge console.  Sanctuary’s fuel solenoid has failed in operation.  When it fails, the engine gets no fuel, and it shuts down or will not start. For diesel engines, I recommend the “normally open” solenoid design. On gasoline engines, the “normally closed” solenoid type is required by Federal Regulation (33 CFR 183.528).

With the “normally open” solenoid type, the engine can be shut down manually if the solenoid were to fail to operate.  On mechanically injected engines, there is a lever on the injection pump that closes the fuel shutoff valve manually.  Anyone with one of these engines MUST know how to do that.

Note: Intentionally closing off the fuel supply to a diesel engine allows the engine to be cranked without the engine starting.  This capability is useful in pre-oiling an engine that has not run in a long time, and may be useful in purging air out of the fuel system.  However, be methodically careful not to overheat the starter motor.  NEVER CRANK A STARTER MOTOR MORE THAN 15 – 30 seconds at a time, and allow several minutes between such operation for the motor to cool.

8. [Simple; Repair.] The Raw Water Pump of which the raw water impeller is a part needs periodic inspection, and periodic servicing. The raw water pump has a gear driven drive shaft. The drive gear is a component part of the central engine timing drive. Sanctuary’s pump and drive gear are built as a removable assembly consisting of the drive gear pressed onto the pump drive shaft, the engine mounting flange, a spacer and the pump housing body. The engine mounting flange contains a lip seal that eliminates lubricating oil leaks at the engine end of the shaft. The water pump housing contains a ceramic water seal that eliminates raw water leaks at the pump end of the shaft. The spacer mechanically separates  the mounting flange from the pump housing, and contains several “weep holes.” In operation, the vanes of the rotating impeller make continuous contact with the front cover plate, the internal cam, and the water chamber surfaces inside the pump. Not only does the impeller wear in use, but sediments suspended in the raw water abrade away the machined internal metal surfaces of the pump. Periodically, either the oil or water seals will begin to leak, and at that point, the pump will need servicing. Learn to remove and replace the pump. I do that approximately every two years, or whenever I note oil or water leakage around the weep holes at the shaft spacer. Rebuild kits are available for these pumps but I prefer to send them out for professional bench servicing.

9. [Simple; Repair.] The Fresh Water Pump is a centrifugal pump that circulates the antifreeze coolant solution through the engine itself, and through engine cooling system components. The belt-driven pump is mounted on the engine. Coolant loss and evidence of coolant leaks are the main symptoms leading to pump replacement. This pump is usually replaced as a unit with a new pump. Replace the antifreeze solution when replacing the fresh water pump.

10. [Complex; Repair.] Diesel engines have a thermostat, just as automobile engines do.  The thermostat sets the operating temperature of the engine coolant, and is very important to regulating the very high internal operating temperatures of internal engine parts, and therefore, proper engine operation and service life.  On our Cummins, it’s a complex task to get to it, but it’s not a technically advanced task. It would be wise to determine where the thermostat is located in the engine before there is an actual need-to-know. Follow the manufacturer’s recommendation for change interval.

11. [Simple; Repair.] The fuel lift pump pulls fuel from the fuel tank(s) by suction.  It in turn provides a low pressure, reliable fuel supply to the injection pump.  Dirty fuel filters place a lot of extra suction load on the lift pump.  Lift pumps can be of electric or mechanical diaphragm design.  Determine what type of lift pump is fit on the engine.  Like the thermostat, this is not a routine service item, but knowing how to change the lift pump can save a “disabled boat” scenario. When the pump is changed, it may be necessary to purge air from the fuel system.

12. [Complex; Usage.] Adjust valve clearances per the engine manufacturer’s service interval. The engine manual will have the specs for intake and exhaust valve clearances and adjustment interval.  My engine manual has a diagram of intake and exhaust valve locations.  Be obsessively careful to keep foreign materials out of the exposed valve train. Clean and vacuum any collected dirt and dust before removing the valve covers. Remove the valve cover(s), adjust the valves to specs, and replace the valve covers.  Aboard Sanctuary, the task takes less than one hour.  The only “special” tool is a set of flat feeler gauges; 0.010″ and 0.020″ are the sizes I need.  If it is necessary to replace valve cover gaskets as part of the job, obtain the replacement gasket kit ahead of time.

13. [Complex; Usage.] Diesel engine fuel injectors provide fuel to the cylinders.  As above, be obsessively careful to keep foreign materials, dust and grit out of the bore holes in the head. Injectors are pressure-activated valves.  Pulses of pressurized fuel arise at the injection pump. During the pulse, the injector valve opens to allow fuel into the cylinder. Flow flows into the cylinder while the pulse pressure is above the injector’s pre-set pressure (“pop-off”) value.  When the pulse pressure drops below the pop-off pre-set, the injector valve closes.  Not all of the fuel sent to the injector is actually injected into the cylinders.  Excess unused fuel returns to the tank via a common (shared) fuel return line.  That excess fuel return serves to cool the injectors.

Injectors need occasional maintenance; usually between 1500 and 3000 hours of operation.  Learn to pull the injectors to take them to a diesel shop for servicing.  Injector servicing requires highly specialized tools and equipment.  Important: when removing and replacing injectors from their bore in the cylinder head, the DIY-mechanic must be aware that there is a copper washer that seals the injector in its bore. These copper washers function as a gasket to prevent cylinder compression gasses from escaping the cylinder into the injector bore.  There is a second “copper” that seals the fuel return line at the injector discharge port.  Mechanics must be aware the copper at the base of the injector bore exists. When removing injectors, it is crucially important to get the old copper out of the bore hole.  If that copper is not removed, it will be impossible to reinstall the injector properly, which can lead to severe damage. Injector coppers usually come out with the injector body, but NOT ALWAYS. Procedures for removing the copper from the bore are in the maintenance manual for the engine.  Always replace the coppers with new when replacing injectors after servicing. When replacing injectors in their bore, verify that they are mechanically aligned with any guide in the bore. This aligns the nozzle in the head. BE CAREFUL NOT TO JAM THE INJECTOR ALIGNMENT SLOT/PIN IN THE BORE.

14. [Advanced; Usage.] There will come a time to have the injection pump serviced.  Servicing the pump is a repair shop activity.  Pump removal and replacement is an advanced DIY-mechanic task. This task does have important background knowledge associated with it.  Injection pumps have tapered shafts that mate with the engine’s timing gear.  Separating that taper from the timing gear requires a special tool; in the case of Sanctuary’s Cummins, an “H” puller.  Separating the pump from the timing gear is not hard, but I would class it as a complex and advanced skill.  There is a woodruff key that locates the pump shaft to the timing gear. Follow disassembly procedures provided by the engine manufacturer. In the case on my Cummins, THAT KEYWAY MUST BE LOCATED AT THE 12 O’CLOCK POSITION OF THE ROTATION OF THE PUMP SHAFT WHEN SEPARATING THE TAPER!  THIS PREVENTS HAVING THE WOODRUFF KEY FALL INTO THE ENGINE. Should that happen, it will be necessary to disassemble the entire front cover of the engine to retrieve it. Ugly!  Reinstalling the pump is easy.  Follow the manufacturer’s directions.

15. [Advanced; Repair.] Removing a cylinder head from an engine is a complex and advanced task. For those with the skills, it is certainly practical to do so on a boat in the water. This task does require a torque wrench and does involve associated technical background knowledge. The head can be pulled with the injectors in place. If the head is removed with the injectors in place, do not place the head assembly flat on any surface in a face-down orientation.  The injector nozzles extend very slightly below the plane of the head.  If the head is placed face-down, the injector’s fuel nozzles can get distorted or damaged.  That in turn will spoil the nozzle’s spray pattern.  It won’t become apparent that happened until the job is all re-assembled and the engine isn’t running well.

This is one task where it’s important to reassemble internal parts in the same place from which they came. Microscopic wear patterns in hardened metal surfaces matter here. Follow techniques to keep track of original parts locations. It is not necessary to pull a head to replace a broken valve spring, but compressed air and an air fitting for an injector seat would be needed. The process is the same as for a gasoline engine.

16. ALL “LOWER-HALF” ENGINE MAINTENANCE IS COMPLEX, AND MOSTLY ADVANCED STUFF. Other than perhaps replacing the front oil seal, I would not recommend doing lower-half maintenance with the boat in the water.

17. [Complex; Age.] Motor mounts can be changed with a boat in the water. This is a mechanically straight-forward task. However, it is necessary to separate the prop shaft at the transmission, and lift the weight of the engine off the mounts in order to replace them. Special safety considerations are necessary. Blocking and cribbing is needed, and any jacking tools need to be able to handle the weight of the engine. Be especially mindful that fingers, feet and extremities are always at risk. When done, it will be necessary to re-align the prop shaft to the engine. A feeler gauge will be needed for that task. DO NOT WORK WITHOUT HAVING SOMEONE NEARBY WHO CAN CALL FOR HELP IF NECESSARY.

18. [Simple; Usage/Age.] While not technically a part of the engine, change the transmission fluid at scheduled intervals. If the transmission has a reduction gear, change the lubricant in the reduction gear if that is a separate maintenance task.

Ground Faults: Difficult To Hire Troubleshooter

Several boat owners have ask how they can find an electrical technician who is qualified to troubleshoot ground fault issues on their boats. The answer is, it can be quite tough.  This post will describe the reasons service technicians see this work as bad business.

To review, this overall problem is the result of “backwards incompatibility” between the “real world” as it exists today vs. the noble goals of the National Electric Code (NEC) code and standards writers.  The 2011 and 2014 editions of the NEC, Article 555.3, requires Equipment Protective Devices (EPDs) on marina docks and at boatyards.  I use the term “ground fault sensor” for EPDs and several other similar devices.  A proposed revision of the NEC for the upcoming 2017 edition would extend the ground fault sensor requirement to single-family residential docks.  By requiring ground fault sensors on docks and at boatyards, the NEC standards writers have caught many dangerous problems on boats.

The widespread rollout of ground fault sensor technology on docks is making boating more safe for all of us, and that will only continue as time proceeds into the future. Many boats in the pleasure craft category have had ground fault and leakage fault problems aboard for many, many years. Up to now, these faults have been silent, hidden and non-symptomatic and boat owners have typically been unaware of the presence of these problems unless they led to a fire or injury.

Ashore, these NEC changes have also been disruptive, expensive and frustrating to marina and boatyard operators. Facility upgrades are very expensive, and these changes add significantly to that cost. Once upgrades are completed and the facility is re-opened for business, marina and boatyard operators find themselves faced with complaints about their dock electrical service from unhappy boaters.  To an unskilled boat owner, the argument is: “My boat has been fine for years!  YEARS!  I don’t lose power ANYWHERE ELSE!  This is the marina’s problem!  Fix it!”

Marina operators generally do not have marine-skilled electricians on staff, so boater complaints result in referrals out to the electrical contractor who performed the facility upgrade. The correct response to Mr. Boater: “Sir!  You have one or more problems aboard your boat!”  I’m sure we can all appreciate how well that message is received by some owners!  Ultimately, lots of professional time is wasted, and no one is happy.

Ground faults on boats are often directly caused by work that was previously done – incorrectly –  by the boat’s owner!  Always, ground faults on boats result from failing to know and comply with the ABYC electrical standards for boats.  Marine electrical technicians with the skills to sort through ground fault and leakage fault symptoms and who can troubleshoot these problems are absolutely overwhelmed by their current workload, and this will only get worse in the future as more and more facilities upgrade their shore power systems.  This spike in ground fault troubleshooting workload is entirely IN ADDITION TO the normal types of workload these technicians would otherwise be staffed up to handle.  Demand for these skills far exceeds supply. Furthermore, troubleshooting ground fault/leakage fault problems is not work for beginners.  Diagnosis of these problems involves advanced troubleshooting skills that take time and experience to develop.  (Analogy: Oncologist vs. Family Practice physician).

Complicating the problem is the fact that the vast majority of boat owners don’t know anything about electricity or electric circuits.  Many boat owners are afraid of electricity in all forms.  In fact, when a professional does encounter a knowledgeable layman, the technician may doubt that the layman actually knows what he’s talking about; most laymen don’t, and that is the technician’s life-experience.  So, all this results in largely uninformed and unskilled customers asking for the most advanced and complex kinds of professional services.

Troubleshooting ground faults on a boat is not good business for the marine electrical technician.  When the technician is all finished with the very complex and tedious work he’s done, to the boat’s owner, everything is exactly the same as it always was.  The boat owner is presented with a bill – maybe a big bill – for the complex, tedious and highly skilled work, and there is nothing except the intangible of a “safety improvement” that this owner receives in return.  There are no shiny new LED fixtures, no neat new trash compactor, no nice new HDTV, no new decor lighting, no improvements in heating and cooling efficiency.  Nothing new and glitzy!  Just the same old, same old.

To repeat myself, Troubleshooting ground faults is not good business for the marine electrical technician.  There are very few common themes in diagnosing ground/leakage faults on boats, so virtually every boat requires a customized approach to troubleshooting.  Very few boaters have electrical diagrams of their boats, and what few diagrams that are available are often incomplete and do not contain the low-level detail of wiring for things like reverse polarity detectors or the active control module on a galvanic isolator.  And certainly not for detachable items like user-supplied surge suppressors.  Every technician knows that each of these service calls will probably take a lot of diagnostic and repair time.  At the technician’s billable rate, that translates to a big bill for the boat owner.  Big bills translate into unhappy boat owners.  Unhappy boat owners translate, for the electrical technician or the business manager, into billing disputes, “no-pay” or “slow-pay” customers, and the legal falderal that goes with all that stuff.  In short, everything about this work, from the technician’s point-of-view, amounts to “bad Karma.” It should be no surprise, then, that many technicians are refusing this work.

So, to the question: “how can an amateur with minimal knowledge look for [ground fault] problems?”  In some locales, it’s going to be very difficult.  I know of good electrical shops that discourage or refuse this work, either through outright refusal or premium pricing that discourages the boat owner. Boaters will have to keep looking until a technician is found who is BOTH skilled AND wiling to take the work.  What I would recommend is to “ask around” both online and in the local market for references to technicians that other boaters respect and recommend. If the name of a person who’s particularly well respected comes up, and they accept the work, it might make sense to move the boat to their home area just to get that level of excellent service.  (Analogy: findings a doctor or dentist or auto mechanic when you move to a new area.) Some boaters may be fortunate enough to have an established relationship with a qualified technician. If so, get on the work schedule as soon as possible and bite the bullet.  To allow for getting on the technician’s work schedule and for the necessary onsite diagnostic time, boaters should assume and plan that this work will take a few weeks at dockside. Anticipate delays in day-to-day activity. The reality is, emergencies will happen and will have a higher priority for your technician.

The ABYC website at http://abycinc.org/?page=CTD has lists of certified technicians by geographic area. Check to see if recommended technicians hold ABYC certifications.   Some non-ABYC technicians may be able to do this work, too, of course, so in the same way you might ask a surgeon how many surgeries he’s done of the type you need, ask the technician about his/her experience troubleshooting ground faults.  Finally, in general, for better or worse, avoid residential electricians; as a group, they won’t understand the marine environment.  In fact, they do things in residential wiring that will CAUSE ground faults; things that SHOULD NEVER BE DONE ON BOATS.

Ground Faults and Dockside Ground Fault Sensors

Major addition: “Test Tools,” incorporated 12/13/2015.
Major addition: “Isolation Transformers,” incorporated 1/18/2016.

EXECUTIVE SUMMARY:

The rollout of 30mA Equipment Protective ground fault sensors (EPDs) at marinas and boatyards is having a big impact on many boats and boat owners. In some places, more sensitive Ground Fault Protection devices (GFP) have been installed. The more sensitive the ground fault sensor, the more likely the conditions discussed below are to cause both real and nuisance power interruption  problems for cruising  boat.

Man-made wiring errors (circuits mis-wired by unqualified personnel) are fairly easy to isolate and identify because they are constantly present and detectable until they are corrected. Some ground faults are “transient” and can appear to “come and go.” Transient ground faults can be difficult, time-consuming and expensive to isolate.

Based on recent experience on several boats, I am more confident than ever that a substantial percentage (20%-50%) of the [pleasure craft] fleet does have man-made wiring errors aboard. In the past, the majority of man-made wiring errors have been hidden, silent and non-symptomatic aboard boats. These same errors will cause ground fault sensing circuit protection devices on docks and at boatyards to trip AC power “off.”   Some of these problems originate with non-complying OEM component design and device selection, so even newly purchased, “straight-from-the-factory” boats are not necessarily free from the possibility of denial of power. Boats manufactured “offshore” are not necessarily designed to be compatible with North American standards.

This article will highlight some ground fault causes that might require service attention from a boat owner.   These conditions will NOT affect all boats. Transient conditions will NOT necessarily affect boats that also have  man-made wiring errors. But for those that are affected, awareness of these possibilities will help with problem isolation and correction. Certainly, transient conditions – if present – will complicate troubleshooting of man-made wiring issues on boats.

GENERAL PROCEDURE FOR APPLYING POWER TO A BOAT:

The Fort Pierce, Florida, City Marina has recently completed a multi-million dollar major expansion project.   The new floating docks at FPCM are equipped with Square D 125V and 250V, 30mA Equipment Protective Device (EPD) ground fault sensing circuit breakers located at the slip-side pedestal.

When we arrived at FPCM, the dock attendant who landed us suggested we have all AC branch circuits on both panels (“house” panel and “heat pump” panel) set to “off.” Sanctuary has two 125V, 30A shore power circuits, but that is the right advice for all boats in all cases. It is particularly useful for connecting the first few times to docks with ground fault sensors on their pedestals. After attaching to the pedestal, set individual branch circuits “on” one-at-a-time. If the pedestal breaker should trip while powering up, take note of which branch circuit breaker caused the trip. It will become obvious in reading this article why that information is very valuable to have.

TRANSIENT GROUND FAULTS:

TOPIC: Inverters and inverter/chargers

One major governing concept for all AC distribution systems in North America is that the neutral conductor of the system must be bonded to the safety ground AT THE SOURCE POINT of the AC power.   For shore power (AC power source ashore), the neutral and ground are bonded together in the shore power infrastructure. An ABYC corollary is, for boats operating on shore power, the neutral and the safety ground MUST NOT be connected together aboard the boat.   However, for inverters operating   in “invert” mode (AC power source onboard), the neutral and safety ground MUST be connected together at the inverter, aboard the boat. In one case, the bond can’t be on the boat. In the other, the bond must be on the boat. Contradiction? No, it’s entirely consistent. In all cases, the neutral-to-ground bond is at the AC power source.

An onboard inverter integrated into the boat’s electrical system must comply with the neutral-to-ground bonding requirements in the manner described by ABYC, E-11. To accomplish that, modern inverter devices have a relay inside the device. When operating in “invert” mode, the relay joins the boat’s onboard neutral (white) and ground (green) electrically together to create the required bonding connection. The relay disconnects the onboard bonding connection when the device has shore power and is operating in “passthru” mode. The operation of the relay maintains compliance with North American electrical standards.

Some inverter devices may not have automatic transfer relays, and instead accomplish the transfer back and forth from shore power “passthru” operation to “invert” operation with manual switching.   That is OK, as long as the transfer switching is wired correctly.

The operation of the inverter’s internal transfer relay has implications that boat owners should understand. Inverters (or inverter/chargers) that are fully integrated into the boat’s electrical system will cause a short duration transient ground fault when shore power is first applied to the boat.   At the exact moment – the very instant – the boat is connected to shore power, an inverter operating in “invert” mode will have the boat’s onboard neutral and safety ground connected together through the bonding relay. As viewed from the pedestal ground fault sensor, that condition is a true ground fault.   In normal operation, when the inverter “sees” shore power, it transfers out of “invert” mode into “passthru” mode. The internal ground transfer relay removes the neutral-to-ground bond, and thus clears the ground fault.   The ground fault sensor at the pedestal will not trip unless the ground fault exceeds 30mA and persists longer than the trip-time of the pedestal ground fault sensor.   So for boaters and service technicians, the specification and operation of an inverter’s transfer interval is important. That relay transfer-time should be in a range less than 25mS.   If the transfer relay is slow (due to equipment specification or environmental contamination), or if manual switching for the inverter is required, the transient ground fault may/will persist long enough to trip the pedestal ground fault sensor.

TOPIC: isolation Transformers

The input side of an isolation transformer (primary winding) connects to the shore power pedestal. The output of the transformer (secondary winding) supplies the AC loads on the boat. The “connection” between the primary and secondary windings of the transformer is via an alternating magnetic field that rises and falls with the rise and fall of the shore power primary voltage waveform. There is no continuous electrical connection between the shore power ground and the boat’s ground system. Like an onboard inverter or a onboard generator, an isolation transformer is treated by electrical codes as an onboard AC source, and so the neutral and ground of the transformer output (secondary winding) are bonded together on the boat.

When a boat with an isolation transformer arrives at a dock after an outing, the transformer’s magnetic field is not present. At the instant that power is applied to the transformer, there is a very high instantaneous “inrush,” or power-on surge, of current. The inrush current can be 10 to 15 times higher than the rated transformer current. For large transformers with low winding resistance and high inductance, inrush currents can last for several seconds until nominal operating equilibrium is reached.

All magnetically coupled devices experience small, naturally occurring internal leakage currents. These leakage currents are proportional to current flow, and exhibit inrush-related transient spikes.

One docks, pedestal circuit breakers with ground fault sensors provide two functions. First, they protect against overload. The nominal overload set-point is 30A for 125V circuits and 50A for 240V circuits. Second, they protect against leakage currents. The nominal leakage current set point is 30mA. So the question becomes, does the inrush transient of the transformer fall to a level that is within both the overload and leakage current trip criteria of the breaker in a sufficiently short time to avoid having the breaker trip power “off?” Emerging evidence seems to suggest that there are some instances where this does not occur.

A friend has a boat with a 50A, 240V shore power input to a Charles Industries IsoBoost Isolation Transformer. The IsoBoost never trips the 50A over-current set-point of conventional pedestal breakers. Not anywhere; not ever. So, the overload transient does fall within breaker tolerances sufficiently quickly. However, even with all onboard load circuit breakers set to “off,” that transformer routinely trips pedestal breakers containing 30mA, 100mS ground fault sensors. On that boat, the Charles IsoBoost inrush spike does not resolve itself within the trip interval of the ground fault sensor, so successful connection to shore power is not possible. The overload tolerance of the breaker is longer than the ground fault trip tolerance.  Charles Industries has developed a “SoftStart” module that clamps and limits the magnitude of the inrush current. That “SoftStart” module is the solution that Charles recommends for tripping ground fault sensing breakers.

It is highly likely that isolation transformers from other manufacturers may also be affected by this inrush spike phenomena. The “ground fault” in this scenario may result from capacitive coupling between the transformer windings and/or ground, or of inductive coupling through the electrostatic shield to ground, or a mix of factors. Whatever, it really doesn’t matter to an affected boat owner. It is something that can be mitigated by design improvements in the future, but those with affected transformers today will have to find work-arounds such as the Charles “SlowStart” module.

TOPIC: Galvanic Isolators

Galvanic Isolators are devices that are installed aboard the boat.   They are electrically located in series with the boat’s safety ground (green wire). Galvanic Isolators contain a diode pack (full-wave bridge rectifier) that blocks small DC galvanic currents but allows AC fault currents to flow.

There are three “generations” of Galvanic Isolator technology. The first generation device consisted of a passive diode pack. That passive diode pack was subject to damage by an overload or surge, and that damage could leave the boat’s safety ground conductor electrically non-conductive to AC fault currents. Many of these 1st generation GI devices are still in service. Unknown to their owners, some percentage of those 1st generation devices are inoperative. That is a potentially serious safety risk. In response to an ABYC standards revision, GI equipment manufacturers developed a “second generation” device. The 2nd generation device utilized an electronic control module to periodically “test and verify” the electrical integrity of the diode pack. This 2nd generation equipment created a transient ground fault, and is incompatible with the emerging presence of shore power ground fault sensing equipment on marina docks. The newest third generation GIs are of the “failsafe” design. They have both a diode pack and a large capacitor, and no longer have electronically active test modules. Third generation devices are designed so that they will not fail in an electrically non-conductive state. If they fail, they fail in an electrically conductive state. In that state, the boat may lose DC galvanic protection, but WILL NOT lose AC safety ground continuity.

Many boats are still fit with second generation Galvanic Isolators manufactured between approximately 2002 through approximately 2008.   One such unit is the Professional Mariner (ProMariner) Prosafe 1, which is the device I installed on Sanctuary. At the time these devices were developed, impressing a small ground fault current on the ground conductor was not a concern in marine shore shore power systems, because marine shore power services did not have ground fault sensors. Thus, using an intentional ground fault was a viable approach.

The Prosafe 1 tests the ship’s ground connection when the device is first connected to shore power, and periodically thereafter in regular operation.   The Prosafe 1 monitor detects the presence of the impressed ground fault, thereby confirming the integrity of the boat’s ground connection through the Galvanic Isolator diode pack and into the shore power infrastructure. The Prosafe 1 ground fault current is specified at 30mA, and it can last a variable period up to several seconds.  The net is, that ground fault can cause a shore power pedestal’s ground fault sensor to trip. In my personal experience aboard Sanctuary, the symptoms have been variable.   At Chesapeake City, MD, I was able to connect to the two 30A receptacles but not to the 50A receptacle through my splitter.   At Ft. Pierce, FL, I was not able to connect to a 30A receptacle, but was able to connect to a 50A receptacle through a splitter.   HOWEVER, at both Chesapeake City and Ft. Pierce, Sanctuary would trip the pedestal breaker at random time intervals.   Sometimes the monitor’s “test pulse” would not cause a trip, and sometimes it would.   During the overnight period, Sanctuary tripped the shore power breaker, on average, twice.   But I was, for some reason I can’t explain, able to reset the breakers.

ProMariner Technical Support has confirmed the above description.   ProMariner acknowledges the problem.   The Prosafe 1 GI device is now discontinued and obsolete, so the company’s advice is, “upgrade the Galvanic Isolator to a ‘failsafe’ design.”   It’s unfortunate that the investment in the 2nd generation device is lost, but ProMariner’s advice is the right technical advice. The important thing is to be aware that this problem exists.   This issue can cause unexpected results and RANDOM loss of power on an otherwise properly wired boat at docks equipped with ground fault sensing circuit breakers.

 

TOPIC: Equipment Aging

The heating element of a hot water heater, by design, lives in a pool of stored water.   That water provides a path for an electric current to flow from the heater element, through the water, to ground via the plumbing connections to the frame of the device.   As water heater elements age, and through many years of heating/cooling cycles, micro-cracks develop in the ceramic insulation of the heating element. Electrical contact between the live conductor of the heating element and the water in the heater’s tank will cause transient ground faults as the water heater cycles “on” and “off.”   The physical size of the contact area and conductivity of the tank’s water will affect the magnitude of ground fault currents. This can be an elusive problem to isolate. If the water is also heated by a propulsion engine hot water heat exchanger, the water in the hot water tank will be hot enough at the end of a day’s outing that the water heater will not cycle when the boat is first connected to shore power. In that case, the ground fault will appear at some miscellaneous and random later time; maybe the middle of the night, maybe the next day, maybe at shower time.

Random equipment aging problems are common in battery charging equipment, household appliances like refrigerators, freezers and ice makers, and other motor-driven appliances like washer/dryers.   If a shore power ground fault sensor trips at random intervals, try cycling one piece of equipment “on” and “off” at a time to isolate the cause.

SOMEWHAT OBSCURE GROUND FAULTS: (Transient or continuous)

TOPIC: Reverse Polarity indicator

Boats fit with 125V, 30A marine shore power services require a Reverse Polarity indicator.   A Reverse Polarity device detects, and warns the boat owner of, reversal of the incoming hot (black) and neutral (white) shore power conductors.   This is a very rare but very dangerous condition. AC power distribution panels and several aftermarket devices are built with reverse polarity detectors, so some boats may actually have several such RP detectors aboard. Electrically, they are all connected in parallel.   Both of Sanctuary’s factory-installed power distribution panels have them, our aftermarket Galvanic Isolator (Prosafe 1) has them, and our aftermarket Bluesea Systems Generator Transfer Switch has them.  The ABYC E-11 Standard calls for these devices to present at least 25KΩ of electrical impedance, but of course, several of these devices in parallel can result in much lower net impedance.   Since by definition, these devices are a “ground fault,” their net effective resistance, if too low, can cause random trips of ground fault sensors on docks. And, especially so in combination with other conditions.

TOPIC: Cable TV and Wired Ethernet

Dockside cable wiring for TV and Internet services, and wiring for Internet service via DSL telephone lines, can cause transient ground faults on connected boats. Normally, cable services and telephone services at marinas are grounded at their point-of-entry to the marina property. HOWEVER, that point IS VIRTUALLY NEVER the same physical point where the shore power ground bond is established. That difference in connection point leads to a phenomena called “ground loops” between and among the dockside services. Ground loop currents can cause transient or continuous ground faults. These ground faults are prone to appear when AC electric demands are highest (hot summer days, cold winter days) on docks. Also, TV and telephone cables are less resistant to corrosion and environmental conditions than the heavy conductors of the AC shore power system. Boaters who use cable TV and/or wired Internet services and experience random trips of ground fault sensors should try disconnecting these services for problem diagnosis and isolation. The long term fix will most likely require the marina to get the various system grounds tied together at the bonding point of the AC power system ashore, but disconnecting those small signal wires from the boat will interrupt the ground fault path and may temporarily alleviate random nuisance tripping of pedestal shore power ground fault sensors.

TOPIC: Surge Suppression Devices

With the advent of the computer age, surge suppressors have become ubiquitous in homes and on boats. There are whole-house surge suppressors that attach to the building’s incoming power line, and there are supplementary surge suppressors in many forms that attach to residential 125VAC power outlets. Computers, TVs, home routers and any number of electronic toys can be protected from transient spikes on power lines by these devices.

The way surge suppressors work is by dumping surge energy “spikes” to ground. There are special diodes in the surge suppressor that bridge the hot current carrying conductor to ground. Recall here that the neutral current carrying conductor is already grounded in the shore power infrastructure. When a high-energy “spike” occurs, the diode is intended to conduct that transient energy to ground. Imagine that a boat is in the vicinity of a “near-miss” lightening strike. That lightening strike causes a large but short-lived energy spike on the electric power line. The onboard surge suppressor acts to ground that spike, thus “saving” attached computer and entertainment equipment from damage. This now becomes the same discussion about damaged diodes that applied to the diode pack of a galvanic isolator. The diodes in the surge suppressor can be damaged in a way that leaves them partially-conductive. That is a true ground fault. In this scenario, the ground fault sensor at the dock pedestal will trip when the circuit breaker with the defective surge suppressor is powered “on.” If a utility outlet circuit causes a dockside pedestal ground fault sensor to trip, consider the possibility of a defective surge suppressor.

GROUND FAULTS CAUSED BY INAPPROPRIATE EQUIPMENT CHOICES: (permanent fault; requires wiring fix/equipment replacement)

TOPIC: Generator Transfer Switch

Every boat with an onboard generator integrated into its electrical system in a manner prescribed by ABYC E-11 will have a selector switch (Generator Transfer Switch) to transfer the boat’s distribution panel(s) between shore power or generator power.   That switch MUST transfer BOTH the hot wires (red, black) AND the neutral wire (white).   The reason for the need to switch the neutral conductor lies with the grounding requirements for AC circuits, described above.   The neutral is bonded to the safety ground AT ITS SOURCE.   For shore power (source ashore), the neutral and ground are bonded in the shore power infrastructure ashore, and MUST NOT be connected together on the boat.   For generators, the neutral and safety ground MUST be connected together at the frame of the generator (source onboard).   To comply with the AC bonding requirement, the neutral, as well as the hot wires, must be switched by the Generator Transfer Switch.   Some boat manufacturers have used switches that do not transfer the neutral.   Some aftermarket installers, to save cost, have used switches that do not transfer the neutral. In the past, that was a hidden, silent, non-symptomatic wiring error. Now, the permanent leakage fault that it creates will trip pedestal ground fault sensors.

TOPIC: Heat Pump Raw Water Circulator

Many boats with two 125V, 30A shore power inlets are wired so that “house” circuits are fed from one of the inlets and heat pump circuits are fed from the other inlet.   However, some boat manufacturers have heat pumps wired to both of the incoming shore power circuits.   In many cases, regardless of how their compressors are wired, heat pumps share a single 125VAC raw water circulator pump across multiple incoming shore power services. In normal operation, any time any of the multiple heat pumps aboard comes “on,” the shared raw water circulator also comes “on.”

The wiring to a shared circulator pump needs to be handled in a way that does not interconnect (bridge, commingle) the two shore power neutral circuits on the boat. A mechanical relay or electronic controls are needed to avoid bridging the two incoming shore power neutrals. If the neutrals are bridged together aboard, that will cause a leakage fault that will trip shore power ground fault sensors.

TOPIC: Neutral-to-Ground Connection Incorrectly Made At A Household Appliance

Some household appliance manufacturers,  and some residential electricians, connect the neutral wire of the appliance to the green safety ground wire at the appliance.   That practice is generally obsolete today.   It has it’s roots in older (1940s and 1950s) residential systems where there was no safety ground in the residential wiring.   So, grounding the neutral at the appliance provided some protection from some kinds of faults.   Today, that condition is called a “phantom ground.”   In modern residential  systems, it is an NEC code violation and on a boat, it is a violation of ABYC E-11, in both cases because it results in a man-made ground fault.   If the affected  appliance  is permanently wired into the boat’s electrical system, this condition will always and continually trip a pedestal ground fault sensor.   It does not matter if the appliance  is powered on, nor does it matter if the circuit breaker feeding the device is set to “on.”   If the appliance is pluggable, physically removing the plug from the receptacle will clear the fault.

TEST TOOL(S) AND TECHNIQUES:

After I put this article up as a post on my website, several readers  asked if I could recommend tools that can test for ground faults and leakage faults. I would only suggest a DIY approach to ground and leakage fault diagnosis to people who self-describe their personal electrical skills as “high” or “advanced.” This work requires the technician to have contact with energized AC electrical circuits containing dangerous, life-threatening voltages. ONLY THOSE WHO – BY TRAINING AND EXPERIENCE – CAN SAFELY PERFORM WORK ON AND AROUND ENERGIZED AC CIRCUITS SHOULD ATTEMPT TO DO SO.   PERIOD.

Indeed, there are some test tools that allow technicians (and appropriately skilled boat owners) to detect the presence of faults on their boats. However, identifying the presence of faults aboard a  boat is only the first step, and actually one of the easiest steps, in overall remediation. The follow-on activities of 1) diagnosing cause conditions, 2) sorting out multiple simultaneous causation conditions, and 3) applying corrective actions require a thorough knowledge of boat AC electrical systems.   Many corrective actions for ground and leakage faults can lead to  re-wiring AC circuits; in some cases, re-designing AND re-wiring of systems may be required.   And as I’ve said before, diagnosing ground faults and leakage faults is a  “high” to “advanced” skill.

For those who are confident in their skills and ability to work safely, my first suggestion is to look at the “AC Safety Test” article on this site, located here:  https://gilwellbear.wordpress.com/category/boat-technical-topics/electrical-topics/boat-ac-topics/ac-safety-tests-for-boats/.   These tests will expose the presence of wiring conditions that result in faults due to wiring errors made by unqualified  personnel. If performed  as I have described them, they require minimal to no exposure to energized electrical circuits.

Three “test-tool” options that come to mind for follow-on self-diagnosis:

1.  There is a local group of businesses in Georgia (Marine Surveyors of North Georgia) that is making and selling a device they call a “Stray Current Sensor” (SCS).  It is a versatile test tool that can be used to track down ground faults.  The tool can accommodate EITHER 50A boats or boats with two 30A inlets.  It sounds an alarm, but DOES NOT trip off the electric service to the boat, when a ground fault is detected.  I like that as a test tool approach, because as a technician, I can keep working without having to reset the whole boat each and every time a fault is detected.  The tool is built upon one of the ABYC-compliant Equipment Leakage Circuit Interrupter (ELCI) current transformers (North Shore Safety Systems, PGFM Control Module, which by the way is also a solution I really like).  Here’s a link to the device: http://www.marinesurveypros.com/scs-stray-current-sensor/.  As I read the MSNG website, it looks like boat owners could rent one of these tools to use for diagnosis and troubleshooting.  That would be a great solution for boaters possessing appropriate electrical skills.  The tool is really only needed on a one-time-use basis.  Once the boat is “cleaned up,” the tool isn’t needed any longer.  So, if the rental charge is reasonable, I’d seriously consider this option.

2.  Home Depot offers an electric panel that’s intended to provide electric service to home Spa pools: http://www.homedepot.com/p/Eaton-50-Amp-BR-Type-Spa-Panel-BR50SPA/100206043?keyword=spa+circuit+breaker.  It would be ideal for a test tool for a 50A boat.  It would be possible to wire this box as a tester for two 30A boat circuits, but that would require changing the double pole 50A GFCI breaker to two 125V GFCI breakers.  In either configuration, it would be necessary to add the necessary wiring and connectors, as this is just the raw box.  Hubbell and Marinco marine-rated 50A plugs and receptacles cost about $80 – $100 each. NEMA SS-2 50A male plugs and female receptacle fittings are also available at Home Depot that would be suitable for an OCCASIONAL USE, FAIR-WEATHER-ONLY USE, test tool, for a lot less than that.   Likewise, NEMA L5-30 male plugs and female receptacles are also available at Home Depot.  The breaker that comes installed in this box is a GFCI Personal Protective breaker with trip sensitivity of 5mA.  The ground fault sensors on docks are Equipment Protective Devices (EPD) with a 30mA trip setting.  The implication is, if you have BOTH 1) one or more significant ground faults AND ALSO 2) one or more of the transient types of ground faults, the sensitivity of this breaker could complicate using it as a diagnostic tool.  “Clean” boats will probably operate OK on 5mA breakers; there is some (as yet unpublished) experience that leads to that conclusion.  However, a completely safe boat may also have nuisance trips with 5mA GFCI breakers.

3.  As above in item 2, buy the Home Depot Spa box for the enclosure itself, and then replace the 5mA GFCI breaker with a 30mA EPD breaker.  However, the 30mA breakers are very pricey, and probably not available at big box stores.  MSRP prices for two pole, 50A, 30mA EPDs are in the range of $500.  Go to an electrical supply house to get one.  Electrical supply house counter prices would certainly be better than MSRP.  But, certainly not inexpensive. Most supply houses will sell to the public, but some may not; still worth investigating.  Also contact Ward’s Marine in Ft. Lauderdale, FL, for availability and price for a 50A, double pole, 30mA EPD.  Ward’s has – literally – “all things electrical,” including Euro and Asia form-factor stuff…

CLOSING THOUGHT:

Man-made wiring errors can be hidden, silent and non-symptomatic. While they may remain non-symptomatic for many years, they should not be regarded as fundamentally safe. Electrical codes are intended to protect us when ABNORMAL things happen in electric circuits; when connections get corroded, when insulation fails or is abraded to expose the metal conductor, when wires get disconnected, when short circuits occur. Bridged (commingled) neutrals work when everything is in perfect order with good connections, but if one of those conductors fails, the other can be severely overloaded and becomes a fire risk. AN open ground conductor means protection from electric shock is absent or compromised. Corrective action should be taken with any boat found to have wiring issues. It’s just the safe thing to do!

Reference: An excellent reference article on GFCI, ELCI and GFPE technologies can be found here: http://www.ecmag.com/section/codes-standards/differences-between-gfci-idci-and-gfpe.

 

Anchoring Rights

In this post, I’ll summarize what I think I know about anchoring rights. I feel all boaters should at least be aware of this context, since it is what actually gives us our “rights” at law, and that we risk losing if we fail, as citizens, to pay attention, become and be involved.

All materials in this post are taken from sources that are assumed to be in the public domain.  If any copyrighted material is contained within these pages, that material will be removed immediately upon receipt of notification.

HISTORY

The customs and traditions of mariners and navigation pre-dates Roman law back to the Phoenicians. Roman jurists regarded the sea and the foreshores as res communes; i.e., property which could be used by all, but which was incapable of private ownership. This ancient rule derives from the historical fact that for most of the history of civilization, goods and people moved mainly by water. Navigable waters were the public highways of the day, and their inherent public character was recognized and protected by the laws of England, Spain and ancient Rome.

The modern Public Trust Doctrine actually originated in English common law. Lord Hale in his treatise, De Jure Marls, distinguished between the proprietary interests of the sovereign (King) and the rights of the public in tidal waters. Hale referred to the former as jus privatum and the latter as jus publicum.

In the United States, the Constitution is the supreme law of the land. Article III, Section 2 enumerates the powers of the federal courts, to include “4. Cases of admiralty and maritime jurisdiction.” Additionally, the Supreme Court ruled in 1848 (decision authored by Justice Joseph P. Bradley) that all Navigable Waters in the US are the jurisdiction of the Federal Government under Article I, Section 8 (specifically, the Commerce Clause) of the Constitution, and that lawmaking related to admiralty and maritime matters was the role of the Federal Congress. (Citation 1: http://scholarship.law.stjohns.edu/cgi/viewcontent.cgi?article=3237&context=lawreview; citation 2: http://law.onecle.com/constitution/article-3/25-admiralty-maritime-jurisdiction.html). And of course, international treaties, such as the United Nations Convention on the Law of the Sea (UNCLOS), as adopted by Congress, have the same force of law as the Constitution itself.

In the US, the Public Trust Doctrine emerged in nineteenth-century America. It imposed substantial restrictions on the power of federal and state governments to abridge public rights of navigation and fishing or to alienate lands beneath navigable waters. The development of the Public Trust Doctrine can be traced in a series of United States Supreme Court cases beginning with Martin v. Waddell, decided in 1842. According to the Court, “When the revolution took place the people of each state became themselves sovereign, and in that character hold the absolute right to all their navigable waters in the soils under them for their own common use, subject only to the rights since surrendered by the constitution to the general government.”

Thus, the various states continue to have the primary responsibility for defining the limits of the public trust doctrine and formulating a policy concerning the disposition of sovereignty submerged lands within their respective boundaries. The states “own” the tidelands and beds under navigable waters.

The character of Public Trust land ownership differs in many respects from that of a private owner. In its modem form, the Public Trust Doctrine limits the power of states to dispose of lands under tidal waters. The doctrine has traditionally been employed to protect public rights to navigation, commerce and fishing, but in some states it has also been utilized, along with other concepts, to protect the public’s access to upland beach areas for recreational purposes.

(Citation: The above paragraphs of historical background were extracted and summarized in the main from this document: http://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1049&context=law_facpub.

FLORIDA

In the State of Florida, the Public Trust Doctrine is set out in Article X, section 11 of the Florida Constitution. This state constitutional provision codified the existing common law, which said title to navigable lakes and streams was held by the state in trust for use by the people. Under the Public Trust Doctrine, Florida became the title-holder of all water bodies “navigable in fact” within its boundaries when the territory attained its sovereign status as a state in 1845. Title vested in the new state by operation of law, without the necessity of any deed, inventory, patent, or survey. As explained by the Florida Supreme Court, these navigable waters “passed to the state in its sovereign capacity to be held by it in trust for the people thereof.” Because of the inherently public character of navigable waters, the essential feature of the trust is that navigable waters are not held for purposes of sale into private ownership, but instead must be held by the state for the use and enjoyment of the public. (Citation: Broward, 50 So. at 829)

FURTHER RELEVANT

Citation: 65 C.J.S. Navigable Waters s. 22, at p. 135.: “… Moreover, public rights on navigable waters are not generally restricted to navigation in the strict sense but also encompass such incidental rights as are necessary to render the broader rights reasonably available, including the right of the navigator to anchor and to moor without unreasonably obstructing others’ navigation rights.” Legal Definition – Corpus Juris Secundum; n; An authoritative legal encyclopedia that provides general background knowledge of the law with footnoted citation to relevant case law. Abbreviated C.J.S.

Specific to the State of Florida is an Attorney General’s Opinion that states, “These incidental rights include the right of the vessel to anchor so long as it does not unreasonably obstruct navigation. The common-law includes rights of anchorage as an element of the exercise of rights of navigation.” (Citation: Florida AGO 85-45.) NB: this AGO does not extend to the aesthetic interests of wealthy waterfront landowners.

CONCLUSION

As I read and “understand” the above, anchoring by cruising yachts in St. Augustine, or at Jensen Beach, or at Sarasota, or ANYWHERE else in Florida, in a manner that does not obstruct adjacent waterways, and in conformance with other applicable federal and state laws, should be entirely permissible under the Public Trust Doctrine. Or, for that matter, ANYWHERE ELSE in the United States of America.

So, then, where does that leave us?

In general, the right to anchor indefinitely in one place is probably NOT unlimited, and may well be within state’s right to regulate. And it is undeniable that there are vessels that are now derelict, and other vessels in the process of becoming derelict, now anchored in Florida waters. Both public and private parties have an interest in controlling and removing such vessels.

For those of us who care about anchoring rights, and for those of us who try to influence government to make reasonable anchoring rules, the real issue is to focus on what is reasonable, and where the lines are between reasonable and unreasonable. It is probably not unreasonable to have a limit on the length of time a vessel can be anchored on any one place. It is probably not unreasonable to specify a minimum safe distance that a vessel must maintain between itself and nearby structures. The trick is to agree to a definition of these criteria that is reasonable to all involved. In many, many areas of modern public life, it seems to me, “we the people” have a lot of trouble coming to reasonable accommodation with one another’s interests. That may be why, in Florida, this particular issue never seems to get settled. And why it is spreading so rapidly to other states, too.